Incremental Learning
Team
Motivation
Incremental learning refers to updating the parameters of a recognition model with additional (labeled) training data instead of training a new model from scratch with the extended set of training samples. It is also called continuous learning and is highly relevant for applications in which a stream of incoming data (structured in data chunks called experiences) is available and should be exploited for further improving the trained models. It is an important aspect for lifelong learning.
Publications
2017
Erik Rodner, Alexander Freytag, Paul Bodesheim, Björn Fröhlich, Joachim Denzler:
Large-Scale Gaussian Process Inference with Generalized Histogram Intersection Kernels for Visual Recognition Tasks.
International Journal of Computer Vision (IJCV). 121 (2) : pp. 253-280. 2017.
[bibtex] [pdf] [web] [doi] [abstract]
Large-Scale Gaussian Process Inference with Generalized Histogram Intersection Kernels for Visual Recognition Tasks.
International Journal of Computer Vision (IJCV). 121 (2) : pp. 253-280. 2017.
[bibtex] [pdf] [web] [doi] [abstract]
We present new methods for fast Gaussian process (GP) inference in large-scale scenarios including exact multi-class classification with label regression, hyperparameter optimization, and uncertainty prediction. In contrast to previous approaches, we use a full Gaussian process model without sparse approximation techniques. Our methods are based on exploiting generalized histogram intersection kernels and their fast kernel multiplications. We empirically validate the suitability of our techniques in a wide range of scenarios with tens of thousands of examples. Whereas plain GP models are intractable due to both memory consumption and computation time in these settings, our results show that exact inference can indeed be done efficiently. In consequence, we enable every important piece of the Gaussian process framework - learning, inference, hyperparameter optimization, variance estimation, and online learning - to be used in realistic scenarios with more than a handful of data.
2016
Christoph Käding, Erik Rodner, Alexander Freytag, Joachim Denzler:
Fine-tuning Deep Neural Networks in Continuous Learning Scenarios.
ACCV Workshop on Interpretation and Visualization of Deep Neural Nets (ACCV-WS). 2016.
[bibtex] [pdf] [web] [supplementary] [abstract]
Fine-tuning Deep Neural Networks in Continuous Learning Scenarios.
ACCV Workshop on Interpretation and Visualization of Deep Neural Nets (ACCV-WS). 2016.
[bibtex] [pdf] [web] [supplementary] [abstract]
The revival of deep neural networks and the availability of ImageNet laid the foundation for recent success in highly complex recognition tasks. However, ImageNet does not cover all visual concepts of all possible application scenarios. Hence, application experts still record new data constantly and expect the data to be used upon its availability. In this paper, we follow this observation and apply the classical concept of fine-tuning deep neural networks to scenarios where data from known or completely new classes is continuously added. Besides a straightforward realization of continuous fine-tuning, we empirically analyze how computational burdens of training can be further reduced. Finally, we visualize how the networks attention maps evolve over time which allows for visually investigating what the network learned during continuous fine-tuning.
2013
2012
Alexander Freytag, Erik Rodner, Paul Bodesheim, Joachim Denzler:
Rapid Uncertainty Computation with Gaussian Processes and Histogram Intersection Kernels.
Asian Conference on Computer Vision (ACCV). Pages 511-524. 2012. Best Paper Honorable Mention Award
[bibtex] [pdf] [web] [doi] [presentation] [abstract]
Rapid Uncertainty Computation with Gaussian Processes and Histogram Intersection Kernels.
Asian Conference on Computer Vision (ACCV). Pages 511-524. 2012. Best Paper Honorable Mention Award
[bibtex] [pdf] [web] [doi] [presentation] [abstract]
An important advantage of Gaussian processes is the ability to directly estimate classification uncertainties in a Bayesian manner. In this paper, we develop techniques that allow for estimating these uncertainties with a runtime linear or even constant with respect to the number of training examples. Our approach makes use of all training data without any sparse approximation technique while needing only a linear amount of memory. To incorporate new information over time, we further derive online learning methods leading to significant speed-ups and allowing for hyperparameter optimization on-the-fly. We conduct several experiments on public image datasets for the tasks of one-class classification and active learning, where computing the uncertainty is an essential task. The experimental results highlight that we are able to compute classification uncertainties within microseconds even for large-scale datasets with tens of thousands of training examples.
2011
Alexander Lütz, Erik Rodner, Joachim Denzler:
Efficient Multi-Class Incremental Learning Using Gaussian Processes.
Open German-Russian Workshop on Pattern Recognition and Image Understanding (OGRW). Pages 182-185. 2011.
[bibtex] [pdf] [abstract]
Efficient Multi-Class Incremental Learning Using Gaussian Processes.
Open German-Russian Workshop on Pattern Recognition and Image Understanding (OGRW). Pages 182-185. 2011.
[bibtex] [pdf] [abstract]
One of the main assumptions in machine learning is that sufficient training data is available in advance and batch learning can be applied. However, because of the dynamics in a lot of applications, this assumption will break down in almost all cases over time. Therefore, classifiers have to be able to adapt themselves when new training data from existing or new classes becomes available, training data is changed or should be even removed. In this paper, we present a method allowing efficient incremental learning of a Gaussian process classifier. Experimental results show the benefits in terms of needed computation times compared to building the classifier from the scratch.