Tristan Piater, M.Sc.
Address: | Computer Vision Group |
Department of Mathematics and Computer Science | |
Friedrich Schiller University of Jena | |
Ernst-Abbe-Platz 2 | |
07743 Jena | |
Germany | |
Phone: | +49 (0) 3641 9 46424 |
E-mail: | tristan (dot) piater (at) uni-jena (dot) de |
Room: | 1211 |
Links: |
Curriculum Vitae
since 2024 | Research Associate / PhD Student | |
Computer Vision Group, Friedrich Schiller University Jena | ||
Topic: “Vision Foundation Models for Non-Natural Images” | ||
2022 – 2024 | M.Sc. Computer Science | |
Friedrich Schiller University Jena | ||
Master Thesis: “On the Robustness of Causal Discovery Methods for | ||
Time Series Data Towards Gradual Violations of Assumptions | ||
2022 – 2023 | Research Assistant | |
Computer Vision Group, Friedrich Schiller University Jena | ||
Topic: “Self-Attention Mechanisms for Medical Images” | ||
2019 – 2022 | B.Sc. Computer Science | |
Friedrich Schiller University Jena | ||
Bachelor Thesis: “Self-Attention Mechanisms for the Classification | ||
of Dermoscopic Images |
Research Interests
- Vision Foundation Models / Vision Language Models
- Multimodal Models
- Promptable Models
- Non-Natural and Medical Images
Publications
2025
Tristan Piater, Niklas Penzel, Gideon Stein, Joachim Denzler:
Self-Attention for Medical Imaging - On the need for evaluations beyond mere benchmarking.
Communications in Computer and Information Science. 2025. (in press)
[bibtex] [abstract]
Self-Attention for Medical Imaging - On the need for evaluations beyond mere benchmarking.
Communications in Computer and Information Science. 2025. (in press)
[bibtex] [abstract]
A considerable amount of research has been dedicated to creating systems that aid medical professionals in labor-intensive early screening tasks, which, to this date, often leverage convolutional deep-learning architectures. Recently, several studies have explored the application of self-attention mechanisms in the field of computer vision. These studies frequently demonstrate empirical improvements over traditional, fully convolutional approaches across a range of datasets and tasks. To assess this trend for medical imaging, we enhance two commonly used convolutional architectures with various self-attention mechanisms and evaluate them on two distinct medical datasets. We compare these enhanced architectures with similarly sized convolutional and attention-based baselines and rigorously assess performance gains through statistical evaluation. Furthermore, we investigate how the inclusion of self-attention influences the features learned by these models by assessing global and local explanations of model behavior. Contrary to our expectations, after performing an appropriate hyperparameter search, self-attention-enhanced architectures show no significant improvements in balanced accuracy compared to the evaluated baselines. Further, we find that relevant global features like dermoscopic structures in skin lesion images are not properly learned by any architecture. Finally, by assessing local explanations, we find that the inherent interpretability of self-attention mechanisms does not provide additional insights. Out-of-the-box model-agnostic approaches can provide explanations that are similar or even more faithful to the actual model behavior. We conclude that simply integrating attention mechanisms is unlikely to lead to a consistent increase in performance compared to fully convolutional methods in medical imaging applications.
2024
Tristan Piater, Niklas Penzel, Gideon Stein, Joachim Denzler:
When Medical Imaging Met Self-Attention: A Love Story That Didn’t Quite Work Out.
International Conference on Computer Vision Theory and Applications (VISAPP). Pages 149-158. 2024.
[bibtex] [web] [doi] [abstract]
When Medical Imaging Met Self-Attention: A Love Story That Didn’t Quite Work Out.
International Conference on Computer Vision Theory and Applications (VISAPP). Pages 149-158. 2024.
[bibtex] [web] [doi] [abstract]
A substantial body of research has focused on developing systems that assist medical professionals during labor-intensive early screening processes, many based on convolutional deep-learning architectures. Recently, multiple studies explored the application of so-called self-attention mechanisms in the vision domain. These studies often report empirical improvements over fully convolutional approaches on various datasets and tasks. To evaluate this trend for medical imaging, we extend two widely adopted convolutional architectures with different self-attention variants on two different medical datasets. With this, we aim to specifically evaluate the possible advantages of additional self-attention. We compare our models with similarly sized convolutional and attention-based baselines and evaluate performance gains statistically. Additionally, we investigate how including such layers changes the features learned by these models during the training. Following a hyperparameter search, and contrary to our expectations, we observe no significant improvement in balanced accuracy over fully convolutional models. We also find that important features, such as dermoscopic structures in skin lesion images, are still not learned by employing self-attention. Finally, analyzing local explanations, we confirm biased feature usage. We conclude that merely incorporating attention is insufficient to surpass the performance of existing fully convolutional methods.