Julia Böhlke, B.Sc.
Curriculum Vitae
2020 – 2022 | Research assistant in the AMMOD Project Focus: novelty detection, active learning and life-long learning |
2016 – 2020 | B.Sc. in Computer Science Friedrich Schiller University Jena Bachelor’s Thesis: “Google Images as a Source of NoisyData for Species Classication in Biodiversity Research” |
Research Interests
Active and lifelong learning for biodiversity monitoring (with AMMOD)Publications
2021
Julia Böhlke, Dimitri Korsch, Paul Bodesheim, Joachim Denzler:
Exploiting Web Images for Moth Species Classification.
Computer Science for Biodiversity Workshop (CS4Biodiversity), INFORMATIK 2021. Pages 481-498. 2021.
[bibtex] [pdf] [web] [doi] [abstract]
Exploiting Web Images for Moth Species Classification.
Computer Science for Biodiversity Workshop (CS4Biodiversity), INFORMATIK 2021. Pages 481-498. 2021.
[bibtex] [pdf] [web] [doi] [abstract]
Due to shrinking habitats, moth populations are declining rapidly. An automated moth population monitoring tool is needed to support conservationists in making informed decisions for counteracting this trend. A non-invasive tool would involve the automatic classification of images of moths, a fine-grained recognition problem. Currently, the lack of images annotated by experts is the main hindrance to such a classification model. To understand how to achieve acceptable predictive accuracies, we investigate the effect of differently sized datasets and data acquired from the Internet. We find the use of web data immensely beneficial and observe that few images from the evaluation domain are enough to mitigate the domain shift in web data. Our experiments show that counteracting the domain shift may yield a relative reduction of the error rate of over 60\%. Lastly, the effect of label noise in web data and proposed filtering techniques are analyzed and evaluated.
Julia Böhlke, Dimitri Korsch, Paul Bodesheim, Joachim Denzler:
Lightweight Filtering of Noisy Web Data: Augmenting Fine-grained Datasets with Selected Internet Images.
International Conference on Computer Vision Theory and Applications (VISAPP). Pages 466-477. 2021.
[bibtex] [pdf] [web] [doi] [abstract]
Lightweight Filtering of Noisy Web Data: Augmenting Fine-grained Datasets with Selected Internet Images.
International Conference on Computer Vision Theory and Applications (VISAPP). Pages 466-477. 2021.
[bibtex] [pdf] [web] [doi] [abstract]
Despite the availability of huge annotated benchmark datasets and the potential of transfer learning, i.e., fine-tuning a pre-trained neural network to a specific task, deep learning struggles in applications where no labeled datasets of sufficient size exist. This issue affects fine-grained recognition tasks the most since correct image data annotations are expensive and require expert knowledge. Nevertheless, the Internet offers a lot of weakly annotated images. In contrast to existing work, we suggest a new lightweight filtering strategy to exploit this source of information without supervision and minimal additional costs. Our main contributions are specific filter operations that allow the selection of downloaded images to augment a training set. We filter test duplicates to avoid a biased evaluation of the methods, and two types of label noise: cross-domain noise, i.e., images outside any class in the dataset, and cross-class noise, a form of label-swapping noise. We evaluate our suggested filter operations in a controlled environment and demonstrate our methods' effectiveness with two small annotated seed datasets for moth species recognition. While noisy web images consistently improve classification accuracies, our filtering methoeds retain a fraction of the data such that high accuracies are achieved with a significantly smaller training dataset.