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Abstract: A common way to study animal populations in the wild in an unobtrusive manner is using heat- or motion-activated
cameras placed in natural habitats to automatically record images and/or videos. Manual analysis of the potentially large amounts
of visual data obtained in this way is a time-consuming process, so automation through machine learning models trained on images
and/or videos is desirable. Most visual animal recognition models are limited to mammal identification and group birds into a single
class. Machine learning models for visually discriminating birds, in turn, cannot discriminate mammals and are also usually not
designed for camera trap images. In this paper, we present convolutional neural network models based on the EfficientNetV2 and
ConvNext architectures to recognize both mammals and bird species in camera trap images. Our ConvNextBase model achieves
a mean average precision of 96.89% on our validation data set and a mean average precision of 93.88% on a test camera trap
data set recorded in a forest in Hesse, Germany. This opens up a new way of automated bird monitoring besides the widely used
method of bird call identification through audio recordings, which is limited to vocal bird species.

1 Introduction

Due to the sharp and ongoing worldwide decline of biodiversity over
the last centuries [10, 18], there is an urgent need for a comprehen-
sive monitoring of ecosystems such that early conservation measures
can be taken if necessary. Automatic recorders can be deployed di-
rectly in the field to autonomously collect large amounts of data over
long time spans with little to no human interference.

To monitor bird populations, microphones that continually record
audio data are increasingly used [41]. Bird species occurring in
the recording area can then be identified using automated bird call
recognition methods[34]. However, not all bird species frequently
vocalize, and vocal activity differs during the year [36]. Thus, mon-
itoring approaches relying on audio recordings alone insufficiently
cover seasonal variations in bird phenology, leaving out mass events
such as migration or dispersal and the overwintering of populations.

To monitor mammal populations, camera traps are used, which
were first introduced in 1956 [14] and have contributed greatly to
wildlife ecology in recent decades [33, 42]. Camera traps are heat- or
motion-activated cameras placed in the wild to automatically record
images and/or videos of animals. To allow continuous data record-
ings, the cameras are usually equipped with an infrared lens for
nighttime images and a customary lens for daytime images. How-
ever, since the cameras are not only triggered by animals, but also by
environmental influences, e.g., sunlight or motion caused by wind,
some pictures are seemingly taken with no animals present.

Manual analysis of the automatically recorded huge amounts of
data requires expertise and is therefore time-consuming and ex-
pensive. Thus, automation is desirable, which also ensures that the
results are less biased by observers [39]. In recent years, machine
learning methods, and particularly deep neural network models, have
been used to analyze large amounts of data in the field of ecology.

Since then, several deep learning approaches for analyzing field
microphone recordings and camera trap images have been explored
and have yielded promising results (see section 2). However, most
animal species recognition models are limited to mammal identifica-
tion and group birds into a single class. Deep neural network models
for visually identifying bird species, in turn, cannot discriminate
mammals and are also usually not designed for processing camera

trap images, but high quality bird photographs. Training deep neu-
ral networks that generalize well even under difficult circumstances
requires large data sets of annotated images showing a sufficiently
large number of all species to be recognized. Due to the huge amount
of animal species occurring worldwide, it is hardly possible to cover
all of them. Therefore, available deep neural network models (e.g.,
[8, 31, 45]) are usually limited to specific regions and small sets of
species from each region for which sufficiently large sets of training
images are available.

In this paper, we present convolutional neural network models that
recognize the highly desirable combination of both mammal and bird
species in camera trap images. In particular, our neural networks rec-
ognize 25 mammal and 63 bird species known to occur in Central
European forests with a focus on our field study site in the Marburg
Open Forest in Hesse, Germany. These include some species that are
very difficult to distinguish visually, such as various marten species
and closely related bird species. Our selection includes a range of
species that is not covered in any available animal recognition model
so far. Our main contributions are:

• We present a deep learning approach for recognizing European
mammals and, for the first time, birds in camera trap images.
• To the best of our knowledge, we are the first to apply the Effi-
cientNetV2 [47] and the ConvNext [29] neural network architectures
to the task of camera trap image analysis.
• We make our trained models publicly available at https://
github.com/umr-ds/Marburg-Camera-Traps to enable
other researchers to build on our work.
• We publish our Marburg Open Forest test data set consisting of
around 2500 camera trap images recorded in Hesse, Germany, in the
same repository.

2 Related Work

2.1 Deep Neural Networks

In (supervised) deep learning, neural network models are trained
to recognize desired patterns using large amounts of labeled data
[27]. In the area of image processing, convolutional neural networks
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(CNNs) [12] have achieved great successes. They learn filter weights
during training that react to certain features in the input. Prominent
examples are AlexNet (the first major breakthrough of CNNs) [26]
and ResNet (introduction of skip connections, which improves the
training of deeper networks) [15].

A highly optimized type of CNN is EfficientNet [46]. It is based
on neural architecture search to investigate how different ways of
scaling a baseline CNN architecture affects prediction quality and
resource requirements. In a follow-up paper, the authors presented
updated EfficientNetV2 model configurations that further improve
the trade-off between performance and resources [47].

The Transformer model [48] does not use any convolutions, but
instead relies on attention mechanisms that help the network to fo-
cus on the most relevant parts of the input. This architecture was
initially used primarily in the field of natural language processing.
Dosovitiskiy et al. [9] applied transformers to image analysis with
the introduction of the VisionTransformer (ViT). Since then, several
works have emerged in this field, which further optimize the under-
lying principle of the VisionTransformer and overcome some of its
limitations, for instance the SwinTransformer [28].

Liu et al. [29] developed a CNN without attention mechanisms,
called ConvNext, by adapting the block structure of a ResNet ar-
chitecture to that of SwinTransformers and adopting other minor
design adjustments from newer model architectures. Through these
improvements, they have been able to outperform previous CNN and
Transformer architectures and achieve new state of the art results.

In our work, we use the EfficientNetV2M [47] and ConvNextBase
[29] models for recognizing animals in camera trap images.

2.2 Automated Animal Classification

The first work on automated animal classification dates back to 2013,
where Yu et al. [51] performed sparse coding spatial pyramid match-
ing (ScSPM) to extract relevant features from previously manually
cropped images. Using these features, they trained a linear support
vector machine (SVM) classifier on a (by today’s standards) small
data set of 7000 camera trap images with 18 animal species.

Deep neural networks were first used for animal species classifi-
cation by Chen et al. [7] in 2014. They performed automatic image
segmentation using a graph-cut algorithm to separate the areas show-
ing animals from the background. For classification, they used a
small CNN trained on 14,000 images containing 20 species.

In the following years, artificial neural networks and especially
CNNs became the state-of-the-art for most image processing tasks.
In most cases, models are pre-trained on large data sets like Ima-
geNet [37] with millions of images and then fine-tuned on smaller
camera trap data sets, a process called transfer learning. With the
publication of the SnapshotSerengeti data set in 2015, which con-
sists of 3.2 million images of 48 animal species [44], a data basis for
training more complex animal recognition models was created.

2.2.1 Animal Recognition: In 2017, Gòmez et al. compared the
animal recognition performance of CNN architectures of different
sizes on a a 26-class subset of the SnapshotSerengeti data set. Deeper
models like ResNet101 performed better than smaller ones, reaching
a maximum accuracy of 88.9% on a class-balanced subset consisting
only of images with animals in the foreground [49].

In 2018, Norouzzadeh et al. [31] trained 9 network architectures
to not only classify animal species, but simultaneously count animals
and determine other attributes such as behavior, a process known as
multitask learning. They used two networks for this purpose: the first
one performed a detection of the images containing animals, and the
second one subsequently performed the analysis of these images.
For training, the authors used the Snapshot Serengeti data set. They
obtained the best results for the animal species classification with a
ResNet-152, which achieved an accuracy of 93.8% on the test data.

In 2019, Tabak et al. [45] introduced the North American Cam-
era Trap Images (NACTI) data set, which consists of over 3 million
images of 27 species taken in North America and Canada [45]. They
trained a ResNet-18 on this data set and achieved an accuracy of
97.6%. They also performed out-of-sample validation by applying

their trained model to images from locations that were not present in
the training set. Here, the model achieved an accuracy of 81.8%.

The interest analyzing camera trap images has continued to grow
since then, supported by competitions such as the iWildCam Chal-
lenge [5], an annual contest since 2018 that focuses on model gen-
eralization to new environments. In addition, companies launched
initiatives to strengthen research in deep learning for ecology, e.g.,
AI for Earth by Microsoft or Wildlife Insights by Google.

One recent trend is the attempt to develop preferably small mod-
els that can also run on less powerful (embedded) edge devices and
thus carry out animal species recognition directly in the field. For
example, Islam et al. [21] trained a CNN model to recognize small
reptiles like frogs, snakes and lizards found in Texas and deployed
their model on an NVIDIA Jetson Nano edge device that is con-
nected to the cameras. Jia et al. [23] performed neural architecture
search on camera trap image data sets to find a lightweight CNN
architecture for animal recognition that performs on par to other
networks, but can run on edge devices.

Automated analysis of camera trap images works best when the
models have been trained on images that are as similar as possible,
ideally from the same location where they will later recognize ani-
mals. Auer et al. [2] proposed an active learning system to specialize
their models on single camera traps with a small number of training
images annotated by experts. They performed their experiments on
a non-public data set from the Bavarian Forest National Park.

What all these approaches have in common is that they are limited
to a comparatively small number of species that usually stem from a
specific geographical region.

2.2.2 Animal Detection: The animal recognition approaches
presented so far perform animal species classification at the image
level without determining where the animals are located in the im-
age. In some cases, however, it is desirable to carry out a localization,
e.g., to count the number of animals or to track the position of the
animals over a sequence of images.

In 2018, Schneider et al. [38] trained object detection models to
localize animals in camera trap images. For this purpose, they la-
beled a subset of the Snapshot Serengeti data set with bounding
boxes delimiting the positions of the animals.

In 2020, Carl et al. [6] applied an object detection model, trained
on a data set of 600 everyday classes, to the detection of 10 Euro-
pean mammal species. The model detected correct bounding boxes
in 94% of the cases and often managed to predict a correct higher
taxonomic rank as classification. This shows that general-purpose
models can suffice for camera trap image analysis in some cases.

Shepley et al. [40] trained models for pig detection on camera
trap images in the same year, using camera trap data sets as well as
images from the website FlickR. They investigated how well models
trained with data from one region could be applied to other regions.

Microsoft developed and made publicly available an animal de-
tection model called MegaDetector [4] as part of its AI for Earth
program. The model was trained on a large number of camera trap
images - some of which are not publicly available - and recognizes
objects of the classes animal, person or vehicle, but does not further
distinguish between individual animal species. The latest version 5,
released in 2022, uses the YOLOv5 object detection architecture.

In 2021, Norouzzadeh et al. [32] presented a system in which ani-
mal detection and animal species classification run separately. Using
the MegaDetector, they localized animals in the images and cropped
the images to the relevant area while sorting out empty images. They
trained a simple classification model using active learning, a process
in which human experts are presented with a selection of images for
labelling that promises the greatest benefit for further training. The
authors showed that this can greatly reduce the amount of human
labelling work without sacrificing significant classification quality.

Recently, Simões et al. [43] applied object detection models to
videos recorded by camera traps. They extended the MegaDetector
from pure detection to the classification of 17 animal species and
developed methods to count the detected individuals.

In our work, we follow the idea of Norouzzadeh et al. of using the
MegaDetector to detect the animals in the images and then identify
them using our own classification model.
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2.2.3 Bird Recognition: Most work on automated monitoring
of bird populations is based on microphones and performs auto-
matic recognition of bird species based on audio data. This method
has proven successful in practice, because microphones require little
power and are therefore easy to deploy. To train deep learning mod-
els to analyze bird calls, large databases like Xeno-Canto∗, where
users from all over the world upload their recordings, can be used.

The most well known approach for automated bird species recog-
nition is BirdNET [25], which is a CNN model trained on a large
audio data set using extensive data pre-processing, augmentation,
and mixup to achieve state-of-the-art performance. Mühling et al.
[30] proposed a task-specific neural network created by neural ar-
chitecture search, which won the BirdCLEF 2020 challenge [24].
It operates on raw audio data and contains multiple auxiliary heads
and recurrent layers. In 2022, Höchst et al. [16] published a system
called Bird@Edge, where the analysis of bird calls is performed on
edge devices directly in a forest and only the results are transmitted
to a server, allowing for real-time monitoring of an area.

There are far fewer publications on visual recognition of birds
than on auditory recognition. Many of these approaches are limited
to the mere recognition and counting of birds from a greater dis-
tance or only make a rough genus determination [1, 13, 17]. The
approaches that identify species are usually limited to a few bird
species from a restricted geographic region. For example, Huang et
al. [19] developed a mobile app in which images of birds can be
identified using a CNN. However, their recognition model is limited
to 27 bird species native to Taiwan. Raj et al.[35] used a CNN to
recognize 60 species found in the Asian sub-continent. Jacob et al.
[22] presented an edge application for the visual recognition of 200
bird species. Ferreira et al. [11] trained a CNN model to recognize
bird individuals from which they had previously collected training
images using an automated method.

To the best of our knowledge, there are no models for the visual
recognition of bird species occurring in European forests and only
few models exist for the analysis of mammals in this region. Neural
network models that can recognize both mammals and bird species
in camera traps do not exist at all in the literature.

3 Methods

Our camera trap image analysis pipeline performs two steps: animal
detection and animal classification, as shown in Figure 1.

3.1 Animal Detection

First, we perform object detection using Microsoft’s MegaDetector
[4] to find the areas in the images showing animals. This also allows
us to sort out the images where no animals are visible, i.e., where
the camera was falsely triggered. The MegaDetector model has been
trained on a very large number of camera trap images from various
sources and therefore has a very good detection rate for a wide range
of animal species. However, its high sensitivity for animal detection
even in difficult environments also repeatedly leads to false detec-
tions of, e.g., tree trunks or rocks. Such false detections should later
be classified as "empty" by our classification model and sorted out
in this way. We use MegaDetector v5a, released in 2022 [4]. It em-
ploys a YOLOv5† model that was fine-tuned on a large number of
camera trap data sets. For each input image, MegaDetector returns
a list of detected objects with bounding box coordinates, detected
class (animal, human, or vehicle), and detection confidence score.

3.2 Species Classification

We perform species classification on all image areas where MegaDe-
tector predicted the class animal. We do this by cropping each image
to the area of the predicted bounding box and resizing it to the input

∗https://xeno-canto.org
†https://github.com/ultralytics/yolov5

Fig. 1: Our two-step animal recognition pipeline

size of the classification model, i.e. 300× 300 pixels. For classifi-
cation, we use the EfficientNetV2M [47] (53M parameters) and the
slightly larger ConvNextBase [29] (87M parameters) model.

We trained both models to recognize the 25 mammal and 63 bird
species that we consider in our work. This includes many, some-
times closely related species that are hard to distinguish on camera
images, especially under difficult viewing conditions, like House
cat (Felis catus) and Wild cat (Felis silvestris), European hare (Le-
pus europaeus) and European rabbit (Oryctolagus cuniculus), Roe
deer (Capreolus capreolus) and Red deer (Cervus elaphus), Euro-
pean pine marten (Martes martes) and Beech marten (Martes foina),
Willow warbler (Phylloscopus trochilus) and Common chiffchaff
(Phylloscopus collybita) and thrushes such as Song thrush (Turdus
philomelos) and Mistle thrush (Turdus viscivorus). Our model also
includes raptors like the Common buzzard (Buteo buteo) as well as
bird species that in Germany are found only during migration, such
as the Redwing (Turdus iliacus), which are easily missed in acoustic
monitoring approaches. A full list of all species is provided in our
github repository. We also added an "empty" class, which brings the
total number of classes to 89.

For each input image, the trained models provide a probability
distribution over all possible classes, in which each class is assigned
a confidence value that the image contains that class. The prediction
class name is derived from the index of the highest confidence value.

3.3 Model Training

3.3.1 Challenges: Training a deep neural network model for
classifying animal species in camera trap images presents several
challenges [39]. We have investigated measures to overcome these
as best as possible.

Amount of data: To train a neural network, a large amount of la-
belled data is necessary. If the amount of data is too small, this leads
to overfitting on the training data, i.e., the network adapts to the train-
ing data set and does not generalize well to other data. We address
this problem by merging images from publicly available camera trap
data sets and images crawled from animal databases into one large
data set (see section 3.4). We also use extensive data augmenta-
tion to create variations in the images during training, increasing the
diversity of the training data set. The operations performed are ran-
dom contrast, brightness and saturation changes, rotation, horizontal
flipping, zooming, shearing, and adding Gaussian noise.

Adaptation to locations: Due to the static placement of camera
traps, the cameras always show the same field of view. If a network
is trained on many images from a limited number of locations, this
can cause the network to adapt not only to the animal species, but
also to similar image backgrounds. As a result the network performs
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significantly worse on images from other camera locations. One way
to reduce this issue is to crop the training images to the areas where
the animals are seen. For this reason, we use the MegaDetector to
determine bounding boxes for all data sets used. When training the
classification model, we use these bounding boxes to crop the train-
ing images to the areas that show the animals. Since our model uses
quadratic input images, we expand the bounding boxes to square
boxes with a side length equal to the larger side of the original rectan-
gular boxes. In this way, the aspect ratio is preserved when cropping
the images. However, since parts of the background are still visible
despite cropping, it is important to use images from as many different
locations as possible for training to prevent location adaptation.

Data quality: Images from camera traps can have variable quality.
In many cases, the animals are not well captured in the frame, but ap-
pear cropped, obscured behind objects, or blurred because they were
photographed in motion. Depending on the time of day and lighting
conditions, the animals are also visible better or worse. Especially
the infrared night shots are in some cases strongly overexposed or
underexposed. This distinguishes camera traps from animal pho-
tographs, such as those found on websites like iNaturalist, in which
an animal is captured in good visual conditions. We address this
problem by adding higher quality photos to our camera trap data sets
and sorting out images where the MegaDetector returns bounding
boxes of very small size or with a confidence value below 0.6.

Species balance: Some animal species are significantly more abun-
dant in the available data sets than others (in our case 24 examples
minimum for Great snipe (Gallinago media), over 300,000 maxi-
mum for Red deer (Cervus elaphus)). This imbalance may cause the
network to learn primarily the frequently occurring animal species
and neglect the rare species. However, these rare species are usu-
ally of greater interest to ecologists, so it is important that they are
correctly identified. To achieve this, we use a data generator that
randomly samples an equal number of images of each species in
each training epoch to ensure that the images of the rare species are
repeated more often.

3.3.2 Training: Our neural network model consists of the fol-
lowing sequence of layers: The input layer contains 300× 300× 3
neurons, here the input images (RGB images of size 300× 300
pixels) are fed into the network. The input is first processed by an
augmentation layer, which generates one augmented version of each
image by applying up to 10 consecutive augmentation operations
from a given selection to the input image. The augmented images
are then fed into the backbone CNN model (EfficientNetV2M or
ConvNextBase), which we initialize with weights pretrained on the
ImageNet data set. We use global average pooling to aggregate the
feature maps output by the backbone model to one feature vector
and add a dropout layer with a dropout rate of 0.6 as a regularization
method to reduce overfitting. The final classification layer uses the
softmax activation function to obtain a probability distribution over
the confidence values of all possible species. We set the learning rate
to 5 ∗ 10−5 at the start of the training and reduce it by a factor of
0.2 if the validation loss has not decreased for 10 epochs. We train
our models for 100 epochs. As our optimizer, we use AdamW with
a weight decay of 0.05.

3.4 Data Sets

Our neural network model focuses on a selection of European mam-
mal and bird species that do not occur in this composition in any
data set available online. Therefore, we combine data from a variety
of data sets. There are some larger freely available data sets with la-
belled camera trap images. However, most of them were recorded in
Africa or North America and accordingly show the respective native
species. For European species, the available data is much more lim-
ited. Some of the species we aim to recognize also occur in North
America, so we can draw on data sets recorded there. We use im-
ages from the data sets Caltech Camera Traps [3], ENA24-detection

[50], Idaho Camera Traps∗, Missouri Camera Traps [52] and North
American Camera Trap Images (NACTI) [45]. Additionally, we use
images from the WCS Camera Traps data set, a collection of images
from 12 countries created by the Wildlife Conservation Society†.

We also use two data sets recorded in Germany, which best
matched our mammal species selection. One was taken from the
Long-Term Population Trends of Disease-Transmitting Rodents re-
search project (hereafter referred to as Rodent) [20], the other one is
the Tierschnappschuss data set‡.

To add more bird images to our training data, we used two bird-
only data sets, namely a birds competition data set from Kaggle§ and
the NABirds data set containing bird species from North America¶.
None of these data sets is perfectly suited for training a model to
recognize birds on camera trap images, because they mostly contain
bird photographs showing the birds in great visiblity, and both cover
only very few of the bird species we intended to recognize.

We supplemented the images from the various data sets with
crawled images to fill out the remaining gaps and increase the im-
age diversity. We downloaded images of our desired species from
the eMammal camera trap data management system∥, crawled pho-
tographs of live animals with verified captions from the website
iNaturalist∗∗ and finally used Google image search to collect more
images of 7 underrepresented mammal species.

Some of the data sets came with manually annotated bounding
boxes, but in most cases the data was only annotated at image or
image sequence level. In this case, we applied the MegaDetector to
obtain bounding boxes for the images and sort out empty images.
A few data sets contain images with no animals, which are labeled
as empty. We use the bounding boxes detected on these images as
training data for our "empty" class. We divided the images of each
data set into training and validation images. For this purpose, we
grouped the images of each data set by species and used the first
20% (maximum 500) of the images of each species as validation data
and the rest as training data. Thus, we divided the total 1,273,379
bounding boxes into 1,226,158 training and 47,221 validation boxes.

For further evaluation, we used a data set recorded in the target
area of our studies. We deployed camera traps in the Marburg Open
Forest (MOF)†† in Hesse, Germany in the first half of 2021. We
again applied the MegaDetecor to the recorded images to locate the
animals. Subsequently, biologists in our team manually classified the
animals visible in the bounding boxes. We compared our models’
predictions to these labels. Table 1 gives an overview over all data
sets we used in this work. See our github repository for a more de-
tailed overview of the number of bounding boxes per species and the
split between training and validation data.

4 Experimental Evaluation

We conducted extensive experiments to evaluate the quality of our
approach. We restrict ourselves to evaluating our trained classifica-
tion models and use the MegaDetector as published by Microsoft.

4.1 Metrics

To determine the quality of the overall model, we use the Accuracy
metric, defined as:

Acck =
|correctk|
|imgs| , (1)

where imgs = {i1, i2, ...iN} is a list of analyzed images and
correktk ⊆ imgs are the images where the correct class is found

∗https://lila.science/datasets/idaho-camera-traps
†https://lila.science/datasets/wcscameratraps
‡https://emammal.si.edu/tierschnappschuss
§https://www.kaggle.com/datasets/gpiosenka/100-bird-species
¶https://dl.allaboutbirds.org/nabirds
∥https://emammal.si.edu
∗∗https://inaturalist.org
††https://www.uni-marburg.de/de/fb19/fachbereich/infrastruktur/mof
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Table 1 Overview over all data sets used in our experiments

Data Set Name Recording Locations Species Images Relevant Used Training Validation/
Total Total Species Boxes Boxes Test Boxes

Caltech Camera Traps [3] Southwestern USA 21 ∼240,000 3 10,915 9,882 1,033
ENA24-detection [50] Eastern North America 23 ∼10,000 5 2,232 1,788 444
Idaho Camera Traps USA 62 ∼1.5M 2 75,699 74,699 1000
Missouri Camera Traps [52] USA 21 ∼25,000 8 11,517 9,768 1,749
North American Camera Traps [45] USA 28 ∼3.7M 9 584,436 581,157 3,279
WCS Camera Traps Worldwide (12 countries) 675 ∼1.4M 7 10,820 9,805 1,015
Rodent [20] Germany 41 ∼14,000 25 14,327 12,645 1,682
Tierschnappschuss Southern Germany 41 ∼170,000 18 140,635 135,675 4,960
Kaggle Birds Worldwide (Internet Searches) 525 ∼90,000 6 1,104 886 218
North American Birds North America 400 ∼48,000 2 429 344 85
eMammal Worldwide (Crawled Subset) 16 13,485 11,140 2,345
InatCrawl Worldwide (Crawled Subset) 88 406,366 377,234 29,132
WebCrawl Worldwide (Crawled Subset) 7 1,414 1,135 279
Marburg Open Forest Germany 19 2,420 0 2,420

in the top k predictions. As is common in the evaluation of multi-
class classification models, we consider not only the Top 1 Accuracy,
but also the Top 3 as well as Top 5 accuracy metrics, which indicate
whether the correct classification is among the predicted classes with
the highest 3 or 5 confidence values, respectively.

One problem with these metrics is that they become biased for
data sets with unbalanced class counts. In the case of a strong im-
balance, as it occurs in our data sets, the correctness of the rarely
occurring classes is barely reflected at all. Therefore, we additionally
consider the mean Class-wise Accuracy (mCA), which we calculate
as the average of the Top 1 Accuracies for each class.

We also use mean average precision (mAP) as an additional qual-
ity measure. The mAP score is the most commonly used quality
measure for retrieval results and approximates the area under the
recall-precision curve. The task of animal species recognition can
be considered as a retrieval problem for each species where the an-
notated images represent the relevant documents. We calculate the
average precision (AP) for each class c ∈ C, where C is the list of
all animal species to be recognized, as follows:

APc =
1

|relevantc|

|imgs|∑
k=1

prec@k ∗ rel@k

with rec@k =
|relevantc ∩ retrievedk|

|retrievedk|

and rel@k =

{
1 if ik ∈ relevantc
0 otherwise

,

(2)

where imgs = {i1, i2, ...iN} is a list of analyzed images ranked by
the prediction score for the class c. relevantc ⊆ imgs denotes the
relevant images for the class c, i.e., the images containing the ani-
mal c and retrievedk = {i1, i2, ..., ik} with k ≤ N are the images
up to the rank k. prec@k denotes the precision@k score, which is
the ratio of retrieved relevant images over the retrieved images and
rel@k is a relevance function which equals 1 if the image at rank k
is relevant and 0 otherwise. Generally speaking, AP is the average
of the precision values at each relevant image. To evaluate the over-
all performance, we calculate the mAP score by summing up and
averaging the AP scores of each species.

4.2 Results

4.2.1 Model Comparison: We compare the results of our Ef-
ficientNetV2 model with those of our ConvNext model first on a
validation set consisting of images withheld from our training data,
and second on the Marburg Open Forest (MOF) test data set we
recorded. Table 2 shows the calculated metrics.

The ConvNext model performs slightly better than the Efficient-
Net model on the validation data (mAP +0.47). On the MOF test

Table 2 Results of the different model types

Metric EfficientNetV2M ConvNextBase

Val Accuracy 91.84 93.03
Val Top3 Accuracy 97.42 97.78
Val Top5 Accuracy 98.37 98.62
Val mCA 99.81 99.84
Val mAP 96.42 96.89
Test Accuracy 84.42 84.24
Test Top3 Accuracy 94.07 94.44
Test Top5 Accuracy 96.65 97.20
Test mCA 99.65 99.65
Test mAP 92.74 93.88

Table 3 Results for training on different species sets

Metric Trained on Birds Mammals Both

Val mAP Birds 97.58 - 97.30
Val mAP Mammals - 97.58 97.02
Test mAP Birds 99.23 - 98.33
Test mAP Mammals - 96.26 95.18

data, the gap is a bit larger (mAP +1.14). It is also noticeable that
both models achieve very high values in the Top 5 Accuracy, while
the Top 1 Accuracy is significantly lower, especially on the test data.
Both models reach almost equally high mCA values. Class-wise
metrics did not show a statistically significant correlation between
the recognition accuracy of a class and the number of training
data available for that class. A closer analysis of the predictions
shows that in many error cases the models confuse related animal
species that are difficult to distinguish visually, such as Carrion crow
(Corvus corone) and Common raven (Corvus corax), Willow war-
bler (Phylloscopus trochilus) and Common chiffchaff (Phylloscopus
collybita), Greater spotted eagle (Clanga clanga) and Lesser spot-
ted eagle (Clanga pomarina), House cat (Felis catus) and Wild cat
(Felis silvestris), European rabbit (Oryctolagus cuniculus) and Euro-
pean hare (Lepus europaeus) as well as Stoat (Mustela erminea) and
Least weasel (Mustela nivalis). In these cases, however, the correct
species is very often listed in the top 5 results.

4.2.2 Species Comparison: We have presented models that
can recognize both mammals and bird species. For comparison, we
have trained one model to classify only mammals and one to clas-
sify only birds. We compare the results of these models to a model
that can recognize both types of animals in Table 3. The compared
models all use the ConvNextBase architecture and are trained with
all measures described in the next section.
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Fig. 2: A selection of images from the MOF data set on which our models had increasing difficulties predicting the correct species

Table 4 Results without different training measures

Metric All measures noAug noCrop noFilt noSamp

Val mAP 96.89 95.71 96.08 86.13 95.67
Test mAP 93.88 93.86 75.60 83.46 95.03

The neural network models perform very well for pure bird recog-
nition, however, only a small part of the bird species to be recognized
is represented in the evaluation on the test data. The validation data
largely consist of images in which the birds are very well recogniz-
able. The recognition of the mammals works slightly worse, which is
due to the fact that the camera trap images primarily used here often
show the animals much less clearly. The models that identify both
bird and mammal species perform slightly worse than the individual
models (test mAP -0.90 to -1.08), but still reach very good results,
which shows that combined recognition is successfully possible.

4.2.3 Measure Comparison: We have taken various measures
to overcome the challenges described in section 3.3.1, namely using
data augmentation, cropping the images to the areas where animals
were detected, sorting out images with low detection confidence,
and sampling the training images in each epoch to an approximately
equal number of images of each species. We now investigate the in-
fluence of these measures on the overall performance. As a baseline,
we trained a model where we applied all measures and compare it
to models where we omit one of the measures each time. Again, all
compared models use the ConvNextBase architecture.

As Table 4 shows, omitting any of these measures leads to a
decrease in model performance. On the test data set a very small
degredation is achieved by omitting data augmentation (noAug: test
mAP -0.02), which shows that although the training data we used
is quite large, increasing its variability via augmentation is still
beneficial to some degree. Not filtering out detections with small
confidences and small bounding boxes leeds to a much stronger re-
duction (noFilt: mAP -10.42). The decrease is due to the fact that in
some cases training is performed on falsely detected areas that do
not contain any animals at all. Not cropping the images to the areas
found by the detection model causes an even more significant perfor-
mance decrease (noCrop: mAP -18.28). For comparability, we used
only the images for training where the MegaDetector had detected
an animal with the minimum confidence. Omitting sampling dur-
ing training lead to a decrease in performance only on the validation
data. On the test data set, the performance actually slightly increased
(noSamp: mAP +1.15), which we did not expect. We attribute this to
the fact that our test data set contains mainly species for which suffi-
cient training material was available. The sampling mainly helps the
model to recognize the less frequent classes better. We therefore still
use this measure in our final model.

4.2.4 Error Analysis: Finally, we examine some images that
were challenging for the analysis by our models. In Figure 2, from
left to right, two images each are shown for which our best model
provided a correct Top1, Top5, Top10 classification or no correct
classification at all. Many of the instances that are difficult to iden-
tify, even for humans, are correctly identified by the model. The false
recognitions shown can mostly be attributed to the poor visibility of
the animals. In many cases, they appear blurred, cropped, or par-
tially obscured, so that relevant distinguishing features are barely
visible or not visible at all. This leads to confusion between similar
looking classes or the model predicting "empty". However, there are
also images where the animals can actually be seen well enough for
recognition, e.g., the squirrel in the bottom right image. This shows
that the models do not work perfectly and need to be better adapted
to some cases, e.g., with more training data from the same domain.

5 Conclusion

We presented a deep learning approach for analyzing camera trap
images that can distinguish not only mammals but also bird species.
This can help researchers to analyze the large amounts of data
generated when using camera traps to observe wildlife. We first lo-
calized the animals using Microsoft’s MegaDetector and then used
our trained EfficientNet and ConvNext models to determine the
species. Our best classification model of the ConvNextBase archi-
tecture achieved a mAP of 96.89% % on a validation data set left
out from our training data and a mAP of 93.88%. on a test data set
we recorded in Hesse, Germany. Most of the models’ errors can be
attributed to animals appearing cropped, obscured or blurred in the
images, which makes recognition difficult even for human experts.

There are several areas of future work. Since improvements would
mainly be achieved by larger and more diverse amounts of training
data, we plan to investigate methods to synthetically generate new
or combine existing images. Furthermore, we will explore to what
extent the images of the species not studied from the already used
data sets can nevertheless be used for training. Finally, we will in-
vestigate whether there are better strategies to balance the amount
of data per species during training that lead to higher performance
improvements for both frequent and rare classes.
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