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Abstract: This paper presents an AI-based smart camera-trap hardware system designed for wildlife monitoring. Our camera
incorporates classification convolutional neural networks optimized for running on embedded platforms at the edge. We primarily
focus on the task of blank-image filtering to alleviate subsequent manual or automatic analysis. System specifications in the
proposed design enable real-time image processing and autonomous operation in the wild. Field tests conducted in Sierra de
Aracena Natural Park (Spain) revealed challenges arising from environmental scene variations. To overcome these challenges,
we employed transfer learning using diverse datasets and location-specific data. All in all, this study demonstrates the feasibility
of building smart camera traps and emphasizes the importance of dataset diversity and adaptation to specific locations.

1 Introduction

Manual image classification is a major burden for wildlife conserva-
tionists, and the easy and cheap access to camera devices is making
the amount of visual information unmanageable. Fortunately, arti-
ficial intelligence (AI) and software automation have emerged as
a solution to alleviate this task. Automatic vision procedures such
as individual identification, species classification, and false-positive
(‘blank images’) filtering on collected data are examples of the
possibilities that are being explored and tested on the field.

Currently, most automatic wildlife image procedures are cloud-
based, utilizing data collected from cameras and stored and pro-
cessed on servers. As an alternative, we propose the design of smart
cameras that leverage power-efficient AI implementations on edge
devices. Our ultimate objective is real-time detection of relevant
events and remote reporting. However, the deployment of these
cameras at different target locations for remote animal monitor-
ing is extremely challenging: camera-trap locations not seen during
training leads to a non-negligible accuracy loss.

This paper is organized as follows. We first introduce (sect. 2) the
proposed visual monitoring system, based on end-to-end integration
of AI pipelines on embedded hardware. Our initial case study com-
prises a dataset of images collected at several locations of Sierra de
Aracena Natural Park, Spain. Promising performance results were
achieved. However, in situ testing of this first approach with our cus-
tomized camera reveals a number of issues to be solved, such as
robustness against illumination changes and limited model general-
ization to new scenarios (AI overfitted to the training dataset). To
address these and other aspects, we introduced additional AI tech-
niques in sect. 3 with a focus on improving model generalization to
the specific location of interest for conservationists. In this second
case study (in-situ images), we evaluated a new pipeline, obtain-
ing better model accuracy while maintaining the same inference
performance in terms of CNN processing time.

1.1 Related Work

New public environmental datasets are constantly released, thereby
expanding the available resources for research. For instance, LILA
BC repository [17] contains a variety of datasets for biology con-
servation, including Snapshot Serengeti (SS) [19], Caltech Camera
Traps [16], and North American Camera Trap Images [18]. Given
the growing availability of large-size collection of camera trap
images, Deep Learning (DL), and specifically its realization in
the form of convolutional neural networks (CNNs), has emerged

as the state-of-the-art method to assist wildlife conservationists.
Previous works have demonstrated the effectiveness of CNNs in
species identification/classification [9, 15, 21, 30], and individual
detection tasks [5, 10, 12, 25, 28] – it is worth mentioning the large-
sized, high-accuracy animal detection model MegaDetector [6, 14].
Furthermore, the integration of CNNs in comprehensive computer-
vision pipelines for wildlife monitoring have also been investigated
[6, 20, 22]. However, generalization to new locations still remains
a remarkable challenge [5, 26]. In this regard, techniques such as
data augmentation and transfer learning have proven to be critical
to improve training performance. The present study is framed in the
area of edge processing of wildlife data, which has been explored by
a limited number of research works [7, 8, 13].

1.2 Proposed Methodology

Our approach includes these steps for integrating AI on edge devices:

1. Data collection: typically carried out by conservationists, who
place commercial camera traps in the wild and then retrieve large
volumes of data. The images must be manually labeled into cate-
gories extract useful information (and/or train AI models).
2. Network training: we can either design and/or train a CNN from
scratch or use pre-trained weights on pre-defined architectures to
speed up this step.
3. System integration: a suitable integration of the AI model on the
targeted embedded platform is critical. Considering the number of
software libraries, hardware processors, and optimization techniques
available, selecting the optimal combination is not trivial.
4. System testing: finally, the experimental validation of the system
requires conducting a series of on-site operational tests in diverse
real-world scenarios. These scenarios always pose new challenges,
demanding methodology refinement to finally meet the prescribed
requirements.

Steps (1)–(3) are covered in sect. 2, while sect. 3 also applies step
(4) for a specific wildlife scenario.

2 Hardware and AI for Animal Monitoring. Case
Study I

This case study is the result of a collaboration with the mam-
mal research group at Doñana Biological Station (CSIC) [1]. Their
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Fig. 1: Case study I. Images captured by commercial camera traps at multiple locations of Sierra de Aracena Natural Park. The categories
associated to these examples are feral cat (left), other species (middle), and blank (right)

research focuses on studying and analyzing population trends of var-
ious species in their natural habitats. One particular area of interest is
the population of feral cats in Sierra de Aracena Natural Park. Over
the years, biologists have collected an extensive dataset of images
and video sequences using commercial camera traps (Bushnell Tro-
phy Cam HD Brown model 119874) placed at different locations
throughout the Park. ‘Blank’ captures – containing no animal –
constitute a high proportion of the collected data. Therefore, two
obvious categories to filter out irrelevant information are animal and
blank. Note that commercial camera traps also register other species
such as dogs, foxes, martens, and wild pigs. This admits a further
categorization into three classes: feral cat, other species, and blank.
Figure 1 illustrates examples of these categories.

2.1 Artificial Intelligence: Classification Networks

Over 8000 images of the three aforementioned categories were
selected to compose a balanced dataset. The AI core of our smart
camera is based on classification networks. We define three clas-
sification tasks. (1) Blank filtering, to distinguish between blank
images and those containing relevant information. (2) Species iden-
tification, to distinguish between feral cats and other species. This
would be a subsequent processing step after blank filtering. (3) Com-
bined species identification and blank filtering, which implies
direct classification of the images into the three categories consid-
ered: feral cats, other species, and blank.

We selected the well-known SqueezeNet [11] as the classification
model. The reason is that this CNN is an energy-efficient and fast-
response model suitable for deployment on embedded devices [29].
To adapt the original architecture to our particular requirements, we
replaced the last 1000-category layer with a classifier featuring 2 out-
puts (for Tasks 1-2), or 3 outputs (for Task 3). We trained the model
(whose weights had been obtained from ImageNet-based training)
using TensorFlow and Keras [4]. For each task, the available data
were split into a training dataset (80%) and a validation dataset
(20%). The images were augmented – applying zooming, rotation,
width/height shifting, and horizontal flipping – during model train-
ing. The training results for the three tasks are presented in Table 1,
which includes precision, recall, and accuracy rates calculated on the
validation data. For calculating these rates, we considered Animal as
the ‘positive’ class and Blank as the ‘negative’ class∗. Keep in mind
that a high precision rate indicates a low number of false positives
(FP), while a high recall indicates few false negatives (FN).

According to biologists’ requirements, we prioritized the imple-
mentation of Task 1 (blank filtering) in our system. This task is
relevant because it greatly reduces human labour in any wildlife sce-
nario and is applicable to all species. Likewise, removing spurious
images right after capturing extends the system lifetime in terms of
SD-card memory saturation and alleviates the computational load of
automatic off-site analysis. Although other approaches for blank fil-
tering could be experimented and tested (i.e., image difference), our

∗For Task 2, ‘positive’ class represents ‘Cat’ while ‘negative’ represents

‘Other Species’.

Table 1 Classification performance rates of Tasks 1-3 on Case Study I

Task Precision Recall Accuracy

Task 1) Blank filtering 0.96 0.75 0.84
Task 2) Species identification 0.99 0.69 0.77
Task 3) Combined id. & blank filtering 0.89 0.96 0.69

aim is developing a global solution based on CNNs, with the future
intention of incorporating additional network outputs for extended
classification tasks.

2.2 Embedded Hardware

We implemented the early prototype on an embedded CPU-based
processing platform (Raspberry Pi 4B [24]), equipped with an
off-the-shelf camera module [23] ∗. To simulate the operation of
commercial camera traps, we incorporated a passive infrared (PIR)
sensor to detect moving objects around the system before capturing
and analyzing images. Finally, to enable field deployment, the hard-
ware set-up was completed by an external battery providing 5 V. A
picture of the system including labels of the hardware components
is shown in Fig. 2).

2.3 Smart Camera-Trap Application

Our system aims to provide the basic functionality of a commercial
camera trap plus on-device image processing to make decisions. The
workflow of the application running on the device is as follows:

Trigger → Capture frames → Analysis → Real-time actions
(PIR sensor) (camera) (CNN) (alarm)

When the PIR sensor detects activity, the camera captures a burst
of images, which constitute the input for the trained CNN. If animal
presence is identified, an alarm is sent to park staff, along with a

∗We plan to use a more energy-efficient embedded device in the future: [3].
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Fig. 2: Main hardware components for the developed camera-trap
vision system
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thumbnail image and the corresponding timestamp. Additional real-
time actions, for example using actuators, could also be incorporated
in the future thanks to the versatility of Raspberry Pi 4B to inte-
grate peripheral devices. Furthermore, the system is able to detect
nighttime periods by analyzing the captured images according to
thresholds associated to the median and standard deviation of pixels.

The application offers different configurable parameters for user
customization, such as the number of images to take, the CNN
weights, or the PIR sensitivity. Concerning the software employed,
we combined multiple libraries for image processing [2], camera
access, GPIO reading, and network inference. We optimized the
CNN execution to be run on our hardware platform [29].

2.4 System Performance

We conducted laboratory measurements to determine the system
performance. The CNN processing time (including image load-
ing, pre-processing, and inference) is approximately 90 ms, thereby
enabling provision of real-time alarms. Concerning power con-
sumption, for a 5-V power supply, the system demands around 0.43
mA when idle and 0.86 mA during image processing. Solar power
can be easily integrated in the future to further extend the system
operation time.

3 Field Tests and System Evolution. Case Study
II

After developing a first version of the smart camera trap and con-
ducting laboratory tests, we carried out field tests at a specific
location of the Sierra de Aracena Natural Park. This location was
chosen because of the high probability of feral cat passing. Interest-
ingly, this location had not been registered by any of the commercial
camera traps that provided the aforementioned images for the train-
ing dataset. Figure 3 shows an example of image at this location
– completely new from the perspective of the CNN –, which we
refer to as ‘Case study II’. This allowed us to evaluate the system
adaptability to untrained scenarios, providing valuable insights for
further refinement and optimization. Note that exclusively feral cats
were observed at this specific location, thus making the task of blank
filtering the only feasible option.

Fig. 3: Case study II. Image captured by our smart camera at a
specific location – completely new for the trained CNN – in the park
(dataset II). This image corresponds to a positive example (feral cat).

3.1 On-site Results, System Limitations

In this field test, we configured the camera to apply the CNN trained
on dataset I (as described in sect. 2) on a burst of 10 frames whenever
motion was detected by the PIR sensor. Over a period of approx-
imately 26 hours of continuous operation in the field, the camera
captured more than 35000 images. Out of these, we manually clas-
sified more than 10000 images (dataset II). We ensured that this
dataset covered a wide range of illumination scenarios and vegeta-
tion changes – more on this later on. Although, the labeled dataset

Table 2 Classification performance rates of the CNN trained and tested on
various datasets

Training // Test datasets Precision Recall Accuracy F1-score

Dataset I // Dataset II 0.19 0.81 0.52 0.31
SS // Dataset I 0.72 0.84 0.73 0.78
SS // Dataset II 0.13 0.92 0.18 0.23

was unbalanced (13% cats – 87% blanks), many distinct situations
were observed – e.g., individuals located far away from the camera
or camouflaged.

For the aforementioned CNN trained on dataset I (sect. 2) oper-
ating on these manually labeled frames (dataset II) as testing data,
we obtained the accuracy results reported in the first row of Table
2 – also including f1-score∗. These results (with low precision due
to many FP) highlight the performance loss resulting from forcing
inference on an unseen location [5]. To delve deeper into the net-
work operation and its performance, we leveraged explainable DL
techniques; specifically, we applied the Grad-CAM algorithm [27].
This analysis led to the following observations:

• Most FP in this scenario were due to network misinterpretation of
vegetation changes as cat individuals. See, for instance, a fallen leaf
in the foreground – initially not there – in Fig. 4, which is incorrectly
identified by the network as an animal. This leaf is present in a high
number of negative frames.
• Regarding FN, we can stress the difficulty of the dataset: detecting
distant or camouflaged individuals can be challenging even for the
human eye.

3.2 Large datasets. Transfer Learning

In order to improve the model performance, we decided to enhance
the training dataset and adapt it to the application scenario. The
larger and more diverse the dataset, the better the model generaliza-
tion. Therefore, we train the CNN using the well-known S. Serengeti
(SS) dataset – the largest camera trap dataset with 1.2 million images
[19]. By specifically employing animal/blank images from the first
two seasons of SS to train the CNN, the model achieves a validation
accuracy of 0.80 in blank filtering.

One straightforward approach consists on directly using this
trained CNN on dataset II images. However, as mentioned earlier, the
very fact that the CNN must deal with an unseen location, together
with the changes in illumination, vegetation, etc. at this location,
which lie out of the scope of those reflected in the SS dataset, lead
to many FP and subsequent loss in accuracy and precision rates.
For instance, if we apply our SS-trained model to datasets I-II, we
obtain the results in the second and third rows of Table 2. While the

∗Note that dataset II is unbalanced, which makes the accuracy rate less

informative compared to precision and recall (and consequently f1-score).

Fig. 4: Grad-CAM [27] explaination map (right) for a FP example
(left). Yellowish pixels correspond to the areas that better explain the
CNN output (shown over the image).
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results on dataset I may be acceptable, when testing on dataset II,
we still observed a significant number of FP primarily attributed to
vegetation changes similar to shown in Fig. 4. This clearly calls for
additional steps to address the challenges posed by environmental
variations. In this direction, a more effective approach is to exploit
Transfer Learning (TL) from this model trained on SS. TL is spe-
cially beneficial when the knowledge from a previous training must
be conveyed to a new application scenario using a small dataset,
particularly when this dataset shares similarities with the original
one.

3.3 On-device Continuous Learning

The proposed solution we describe next involves (a) leveraging
large-size datasets through TL, and (b) employing a dataset tailored
to a specific camera location.

Given that there is no prior large-size dataset available for a
specific location, we produce a synthetic dataset on-the-fly. These
synthetic images are generated to simulate the background captured
by the camera at that location, along with synthetically placed indi-
viduals (of the desired species). Data generation includes variations
in position, size, and other parameters related to data augmentation.
See examples of synthetic training images in Fig. 5. This approach
aims to incorporate knowledge about the particular deployment loca-
tion into the CNN model. The updated workflow for the application
is as follows:

Capture blanks → Train CNN
. ↓
Trigger → Capture frames → Analysis → Real-time actions

It includes a first calibration period in which (i) the camera takes
background images, (ii) generates synthetic data containing individ-
uals (cats), and (iii) re-trains the network with these data (TL from
SS). The main challenge was the integration of the training process
into the embedded hardware.

The results for our testing dataset are reported in Table 3. The
effectiveness of the proposed solution is evident when comparing
Tables 3and 2.

3.4 Discussion

We found that the majority of errors occur when it comes to iden-
tifying distant or camouflaged individuals (FN), or when there are
significant changes in illumination or vegetation (FP), suggesting the
need for endowing the model with further information about the sur-
veyed scene. For instance, we can periodically re-train the CNN with
batches of synthetic data generated from temporally-distributed cap-
tured backgrounds (Continual Learning approach). It is also worth
noting that processing field wildlife data poses challenges and dif-
ficulties. As an example, we conducted tests using the well-known

Fig. 5: Synthetic training data generated on-site by combining the
background of the location with artificially placed individuals.

Table 3 Classification performance rates of the CNN trained on synthetic data
generated in situ (transfer learning from SS) and tested on field data

Training // Test datasets Precision Recall Accuracy F1-score

SS → on-site imgs // Dataset II 0.53 0.46 0.88 0.49

Table 4 Classification performance rates of MegaDetector tested on on-field
real data

Test dataset Precision Recall Accuracy F1-score

Dataset II 0.28 0.88 0.70 0.43

MegaDetector model [6, 14] on the collected images, and this model
also produces classification errors – the results are reported in Table
4 ∗. A detection example is shown in Fig. 6.

Fig. 6: Sample image analyzed with MegaDetector. This FP exam-
ple clearly illustrates how challenging classification of data collected
in the wild is.

4 Conclusions

The implementation of a smart camera-trap system using AI mod-
els on edge devices has the potential to significantly reduce human
labor in wildlife monitoring scenarios and enables the provision of
real-time alarms for quick actuation. We have developed a smart
camera-trap based on a classification CNN tailored for execution
on an embedded platform. The performance of the proposed system
allows for real-time operation and unsupervised use. However, field
tests revealed misclassifications caused by varying environmental
conditions. This calls for robust and adaptable AI models to achieve
reliable operation regardless of the deployment location. To enhance
the model performance, we propose the application of TL from a
larger and diverse dataset. In particular, we re-train the model with
location-specific data. While inference is still far from being perfect,
there is room for further refinement, for example confidence thresh-
olding on CNN outputs, to enhance accuracy, precision, and recall
rates.

Overall, this study demonstrates the potential of smart camera
traps in wildlife monitoring, the importance of optimizing the sys-
tem performance, the relevance of dataset diversity and adaptation
to specificities of the deployment locations, and the ongoing need
for refining techniques to address the challenges posed by real-world
environmental conditions.
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∗To calculate performance rates, we considered as ‘positive’ those pre-

dictions from MegaDetector including a detected object (regardless the

number or position); otherwise, we assumed ‘negative’ predictions.
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