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Abstract:
Effective monitoring is crucial for conservation efforts, especially in forests, which cover a significant portion of the Earth’s surface
and are home to diverse ecosystems. Monitoring terrestrial animals often relies on indirect evidence or localized methods, such as
camera traps, which provide limited data. Aerial methods, including drones and satellites, are increasingly used but face challenges
in dense forest areas. Despite the existence of multiple public airborne wildlife datasets, the ecosystem forest is not addressed so
far. For this reason, this work introduces a novel multispectral airborne dataset of forest animals, including spatial information. Like
this, the dataset shall act as the foundation for the development of an automated wildlife detection process in forests using modern
technologies such as airborne light-field sampling. The proposed dataset will consist of geo-referenced RGB and thermal video
data from multiple drone flights over forests, wild animal gates, but also in animal parks with near-natural structured enclosures.
So far, 1.62 TB of data (37.53 h footage) have been recorded between April 2022 and June 2023. The dataset mainly contains
videos of species native to Austria such as red deer, chamois, roe deer and wild boar. Both the data recording and the labelling
are still ongoing.

1 Introduction

The loss of biodiversity, alongside the pressing climate crisis, poses
one of the most significant challenges humanity faces today [31, 36].
Earth’s near-natural habitats and the associated diversity of life are
currently under immense threat and rapidly declining, pushing us
into the sixth major wave of species extinction [6]. Countless animal
and plant species across the globe are in imminent danger of extinc-
tion, posing a risk to entire ecological networks [38]. To prevent
such extinctions, accurate and reliable monitoring is essential. This
enables us to precisely assess wildlife populations, detect potential
declines, but also identify increases, such as those caused by inva-
sive species [9], at an early stage. In turn, this allows implementing
targeted management measures to address these changes [25].

On land, especially forests are of utmost importance, as they
cover approximately 30.74% of the Earth’s surface [13]. In Aus-
tria, this number is even higher, according to the Federal Forest
Research Center; its habitat accounts for over four million hectares,
or nearly 48% of Austria’s national territory, making it one of the
most densely forested countries in Europe [2]. However, alarming
global trends were observed between 2000 and 2010, especially
with tropical countries experiencing a net deforestation of 7 million
hectares per year [15]. The same can be observed in Europe, with
an increase in the harvested forest area of 49% between 2015 and
2020 [7]. This development has not stopped since then and is still
ongoing, which highlights the urgent need for conservation efforts
and sustainable land management practices to address the ongoing
challenges in the ecosystem forest. Forests are crucial in preserving
biodiversity and regulating the climate, playing key roles in these
vital aspects. On a global scale, they serve as habitats for over half
of all known species, thereby supporting and safeguarding a remark-
able array of life forms. Additionally, forests offer a multitude of
valuable ecosystem services that contribute to the overall well-being
of our planet [1].

In the case of terrestrial animals, indirect evidence like footprints,
tracks, or scat is analyzed to estimate population size and deter-
mine the status of a given population or habitat using statistical
methods [28]. Additionally, direct methods such as camera traps are
commonly employed, which automatically capture photos or short

video sequences when an animal moves through the monitored area,
allowing to get insights into the local animal population [5]. All these
methods have the problem of being very localized and of providing
very small sample sizes [37]. To overcome this issue, aerial methods
utilizing (un-)crewed aerial vehicles or even satellites are used more
frequently next to classic camera traps [39]. However, the dense veg-
etation in forested areas poses a significant challenge when it comes
to observing and counting wildlife using aerial methods [39], as
shown in Figure 1a and Figure 1c.

In contrast to classic visual airborne approaches, airborne light-
field sampling (ALFS) [3] enables the identification and analysis
of the forest floor, including the presence of wildlife, by uncover-
ing the obstructing forest cover [23], as shown in Figure 1b and
Figure 1d. In combination with periodic drone flights, ALFS allows
the creation of a system that is capable of identifying and counting
animals. In the near future, this should make it possible to monitor
animal populations over a wide area. To automate this process, it is
necessary to adapt methods from the field of artificial intelligence
(AI), respectively computer vision (CV), such as convolutional neu-
ral networks or vision transformers, to this kind of visual data and
the use case of wildlife detection. Next to the creation of suitable
model architectures, datasets are of utmost importance, allowing to
train appropriate model instances. Due to the novelty of ALFS, there
are currently no such datasets publicly available. For this reason, a
multispectral airborne-light-field dataset for the detection of forest
animals is proposed in the present work. This dataset is not exclu-
sively intended for ALFS-based systems and could also serve as a
basis for other aerial monitoring methodologies.

2 State of the Art

The current state of monitoring wildlife populations using visual
techniques, including camera traps, drones, and satellites, is dis-
cussed in this section. These tools provide valuable data on species
presence and habitat changes. Additionally, airborne light field sam-
pling is presented – an emerging methodology enabling detailed data
extraction. This approach has the potential to enhance population
estimation accuracy in forests by overcoming occlusion challenges.
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Fig. 1: (a) Uncrewed aerial vehicles equipped with RGB and infrared (IR) cameras can be used for monitoring wildlife, but face challenges in
forested areas due to the dense vegetation. Like this, animals are only partially or not at all visible (marked with red, dashed bounding boxes)
in respective recordings, as shown in (c). Combining multiple shots with exact spatial information (drone position and orientation, as well as
a digital elevation model) using airborne light field sampling (b) allows changing the focus of the image to the forest ground instead of the
treetop and, thus, revealing hidden subjects such as animals (marked with red bounding boxes) (d).

2.1 Visual Wildlife Monitoring

Next to footprint, track and scat analysis, also bioacoustic sen-
sors [35] and especially visual methodologies are used for monitor-
ing wildlife. The used techniques reach from manual observations by
e.g. wildlife biologists, rangers or hunters, but also include citizen
science projects such as MammalNet (https://eu-citizen.
science/project/226 (Accessed on 09.08.2023)), and go
beyond to the utilization of highly advanced technology such as
camera traps, (un-)crewed aerial vehicles and satellites. As dis-
cussed by Wang et al. [39] these surveying techniques show different
(dis-)advantages, especially in the context of the observable area
and animals, but also regarding the resulting costs. As outlined in
Figure 2, uncrewed aerial vehicles (UAVs) are in the middle of
this continuum. UAVs support the observation of rather big areas,
with comparatively low costs. Furthermore, UAVs are applicable
for observing rather small animals, due to their low distance to the
ground.

In addition to these characteristics, the suitability of monitor tech-
niques is use-case-specific. This is mostly the result of the typical
operating distance between the observer, respectively the observing
device, and the monitored area/animal, as well as the used imag-
ing sensors. Especially in forest habitats, mostly camera traps and
manual monitoring techniques are applied. Other techniques lead to
highly unreliable animal population estimates, due to occlusion by
vegetation, as for example discussed by Gonzalez et al. [16].
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Fig. 2: Different visual survey techniques used for monitoring ani-
mals. They show different (dis-)advantages in the context of the
observable area, the costs, the distance, and the minimal observable
animal size, which is also related to the number of pixels and, thus,
the level of detail that an animal will typically show within a record-
ing as discussed by Wang et al. [39].

2.2 Airborne Light Field Sampling

ALFS utilizes light-field technology as its foundation [24] and has
been successfully tested in the context of search and rescue mis-
sions [33]. Light fields represent a scene as rays that have an origin
(spatial location) and a direction (two angles). ALFS recordings
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Table 1 Overview of existing airborne wildlife datasets, animal species, animal annotations, habitats and recording modalities (based on [27]).

Data Images
(C/T/B)1 Species Annotation Habitat Recording

Type Count Avg. Pixels Country2 Year Device3 Type Altitude Angle

[12] 561 (C)
Elephants,
Zebra,
Giraffe

Boxes 4305 50 Semi-arid grasslands,
Savanna KEN 2014, 2015 CAV Manually 90 - 120 m Tilted

[20] 541 (B) Waterfowls
(Siberian Crane) Boxes 8976 7 Wetland CHN 2018 UAV Periodic Images 100 m Nadir

[19] 40 (C) Fake seabirds Points 1560 17 - 275 Beach AUS 2016 UAV Several Images
per altitude

30, 60, 90,
and 120 m Nadir

[32] 753 (C) Penguins Points 137365 30 Antarctic Islands ATA 2013 - 2015 CAV Periodic Images Unknown Nadir

[17] 1059 (T) Turtles Points 1902 10 Nearshore Pacific
Ocean CRI 2017 UAV Periodic Images 90 m Nadir

[29] 2074 (C) Elephants Points 1581 75 Semi-arid grasslands,
Savanna

ZAF, BWA,
NAM 2015 - 2018 CAV Periodic Images 900 - 1200 m Nadir

[40] 4653 (C) Wading birds Boxes 57000 35 Wetland USA 2020 UAV Periodic Images 76 - 91 m Tilted

[41] 110667 (C) Waterfowls
(Goose, Gull, ...) Points 631349 50 Izembek Lagoon USA 2017 - 2019 CAV At predetermined

points 457 m Nadir

[18] 3947 (C) Albatross,
Penguins Boxes 44966 300 Coastlines FLK 2018, 2019 UAV Periodic Images 90 m, 60 m Nadir

[34] 663 (C) Cattle Boxes 1919 90 Cattle pasture JPN 2016 UAV Periodic Images 50 m Nadir
[30] 948 (C) Sea Lion Points 948 75 Aleutian Islands RUS Unknown CAV, UAV Unknown Unknown Unknown

[22] 11469 (C) Whale IDs 4542 1500 Open Sea

USA, CAN,
ARG, BRA,
ZAF, AUS,
NZL

1970 - 2019 CAV, UAV Unknown Varying Varying

[8] 44185 (B) Seals Boxes 14311 55 Coastline Alaska USA 2019 Unknown Unknown Unknown Unknown

[21] 1 (C)
[Orthomosaic]

Pelicans,
Terns,
Gulls,
Cormorant

Points 21516 30 Coastline MRT to GIN
(West Africa) 2019 UAV Periodic Images 20 - 50 m Nadir

[4] 61994 (T)
[48 videos]

Human,
Elephant,
Giraffe,
Lion, Dog

Boxes 166221 35 Semi-arid grasslands,
Savanna

ZAF, MWI,
ZWE 2020 UAV Video 60 - 120 m Tilted

[11] 88000 (C) Crocodile IDs WIP 1000 Desert, Rivers, Ponds,
Canals IND 2022 UAV Video 8 - 10 m Nadir

[10] 633 (C) Whale Boxes 633 50 Open Sea ARG 2006 - 2017 Satellite Single Image 450 - 700 km Nadir
1 The datasets contain either colour/RGB images (C), thermal/IR images (T), or both (B).
2 Countries are denoted in their ISO 3166 Alpha-3 notation.
3 Used devices are uncrewed aerial vehicles (UAV), crewed aerial vehicles (CAV) and satellites.

allow visualization and processing beyond conventional imaging.
For example, ALFS enables the possibility of creating an integral
image with an arbitrarily parameterizable focus.

Light-field samples are typically created using specialized hard-
ware, such as camera arrays or microlens-based cameras. Further-
more, one moving camera can also be used to record comparable
data. In the case of a moving airborne vehicle equipped with one or
multiple cameras, this is called airborne light-field sampling (ALFS).
To create a light field sample with ALFS, a sequence of colour and
infrared (IR) camera images captured from a UAV flight is merged
with positional information from a global navigation satellite system
such as the Global Positioning System (GPS) and a digital elevation
model (DEM) (cf. Figure 1b) such as the global Aster dataset[14],
allowing to create an integral image for the monitored area. In the
context of wildlife monitoring in forested environments, this inte-
gration allows for changing the focus of the image from the treetops
to the forest ground, thereby revealing hidden objects like animals,
as shown in Figure 1d.

2.3 Airborne Wildlife Datasets

Multiple airborne wildlife datasets are publicly available, containing
images of different animal species as listed in Table 1. These datasets
are mostly created using (un-)crewed aerial vehicles such as drones
and planes, but also contain images from satellites. The shown
species range from small to big birds (e.g., terns or gulls, pelicans),
mammals (such as dogs, cattle, zebras, elephants and even whales)
and reptiles (e.g., crocodiles). The listed datasets show similar prop-
erties in the context of the recording type, using mostly periodic
images that are created vertically to the ground (nadir) from a low
altitude of a few dozen meters, but can also reach multiple hundreds
and even thousands of meters distance to the ground. Concerning the
monitored habitats, the available datasets address a tremendous vari-
ety of ecosystems, with one exception. To the best of the authors’
knowledge, there is no airborne dataset of forests, respectively forest
animals. This deficiency is probably related to the previously men-
tioned problem of dense vegetation heavily obscuring objects as well
as the high effort and difficulty involved in detecting wildlife under
the treetop.

3 Our Dataset

The dataset proposed in this work mainly contains videos of species
native to Austria such as red deer, chamois, roe deer and wild boar. In
order to be able to collect sufficient high-quality data for the train-
ing of AI models, regular flights are carried out over forests, wild
animal gates, but also in animal parks, such as the one in the city of
Haag or in Grünau im Almtal (Cumberland) with near-natural struc-
tured enclosures all around Austria (Tyrol, Upper Austria, Lower
Austria, Carinthia). So far, the dataset consists of 37.53 hours of
flight footage (1.62 TB of data) recorded from April 2022 to June
2023 (some examples are shown in Figure 3 and Figure 4). Record-
ing happens with hunters and wildlife biologists, under the consent
of the responsible individuals and the premise of not disturbing the
animals.

(a) 48.09943, 14.557593 (b) 47.805976, 13.948753 (c) 46.653169, 14.288053

Fig. 3: A random selection of flights from the dataset with the asso-
ciated take-off locations as WGS84 coordinates.

The recordings are created with multiple drones from the man-
ufacturer DJI as listed in Table 2. While flying, the drone records
a video at 29.97 frames per second. During recording, the drone is
configured with a fixed orientation and avoids in-flight rotations and,
thus, turn-artefacts which mostly result in motion blur. Additionally,
the camera is always aligned vertically to the ground (nadir), result-
ing in orthophoto-like images. The drones fly automatically based on
a given grid-like route with a side distance of 20 to 35 m between the
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Fig. 4: Random selection of sample frames of the dataset, showing
one RGB frame (left) next to the associated thermal frame (right).
As shown, the dataset consists of recordings from different seasons
with varying environmental conditions, but also diversity regarding
the forest and forest-near habitats.

Table 2 Summary of drones, resolutions, and recorded videos in our dataset.

DJI Drone Camera Resolution (px) Recorded Video Pairs

RGB Thermal Count Dur. (min) Size (GB)

Mavic 2 Adv. Enterprise 1920 × 1080 640 × 512 79 132.98 86.52
Mavic 3 Enterprise 3840 × 2160 640 × 512 429 558.77 531.58
Matrice 30T 3840 × 2160 1280 ×1024* 612 1434.15 954.84
Matrice 300 + 3840 × 2160 640 × 512 59 126.29 45.95
* Super resolution from 640 × 512 px.
+ Applying the Zenmuse H20T camera.

grid’s lines, a constant speed of 3 to 5 m/s and a steady altitude of 30–
60 m, depending on the present tree height. Although some drones
carry a gimbal system with three cameras (zoom, wide-angle and
thermal) such as the DJI Matrice 30, Matrice 300 and Matrice 350,
some systems only have two cameras (RGB and thermal). There-
fore, we have unified the dataset into two channels and only use the
wide-angle camera when two RGB cameras are available.

ALFS requires exact spatial information (global position and
global orientation of drone, respectively camera) for the creation
of the integral images. Every single used drone supports multiple
Global Navigation Satellite Systems (GNSS) such as GPS or Galileo
in combination with Real Time Kinematic (RTK) [26], allowing
to have centimetre positional accuracy. The spatial information is
recorded using DJI’s subtitle feature as meta-information per video
frame using the .srt file format. Since DJI’s Pilot App V2, these
files only contain spatial information with 5-digit accuracy, which
is not precise enough for ALFS. However, the spatial information is
also logged in an additional log file with a higher precision, which
can be accessed using tools such as AirData (www.airdata.com

(Accessed 09.08.2023)). This log file is only recorded with a 10 Hz
update rate. Thus, a direct mapping of frames and positions is not
possible and requires the combination of both the .srt file and the
log file, allowing us to interpolate the required positions per frame.

Based on the drone recordings, animals are labelled in the multi-
spectral data (RGB and thermal frames) by wildlife biologists. Every
recording is associated with multiple labels of animals. As the data
are videos, one animal will most likely occur in several frames of
the video. Thus, we distinguish between labels per frame and a
track of a single individual animal across several frames. Labels
provide per-frame spatial information in the form of a boundary
polygon, allowing the creation of segmentation masks and axis-
aligned bounding boxes for classical object detection tasks. As we
record data in forests, animals will be (partially) covered in some
frames, every per-frame label, therefore, contains a visibility param-
eter indicating if the animal is entirely visible, partially obscured
or hidden. Each animal track is associated with an identified ani-
mal species. For situations, where the animal species is not clearly
recognizable, a confidence value for the species can be specified.
Thus, frames with low-confidence labels/tracks can be removed in
the training process. Furthermore, it is possible to store the age and
gender of animals (i.e., the tracks) if known or recognizable. The age
of an animal will be classified into unknown, juvenile, or mature; the
gender into unknown, male, or female. Per-default age and gender
are marked as unknown. Currently, the dataset consists of 4772 red
deer, 4064 roe deer, 24 chamois, 329 wild boar, 336 rabbits and 356
fallow deer frame labels - gender and age are not included so far.

Next to the videos and labels, calibration parameters are also
available for the used cameras. These are necessary, as the drones
have different cameras (zoom, wide-angle, thermal) with various
parameters (resolution, field of view, etc.). Through said distortion
coefficients, it is possible to rectify individual frames and combine
the RGB and thermal information into a multispectral image stack.
The coefficients have been manually determined using calibration
patterns and feature matching.

4 Conclusion and Outlook

As discussed in this work, the alarming decline of biodiversity on our
planet requires suitable monitoring methodologies and strategies as a
foundation for targeted management measures. While camera traps
have been widely used for monitoring wildlife for many decades,
airborne methodologies are used more and more frequently. How-
ever, this trend is mostly limited to non-forest habitats. With ALFS,
a visual airborne approach has been developed that reveals animals
on a ground level within forests; thus, for the first time, it enables the
implementation of airborne wildlife monitoring systems for forests.
This work proposes a novel multispectral airborne dataset of for-
est and forest-near environments, which may be used as the basis
for ALFS-based wildlife detection. Currently, data is still being col-
lected and labelled manually with the help of wildlife biologists.
Once the recording and labelling process is complete, the entire
dataset will be publicly available and periodically extended. Due to
the novelty of ALFS, there are also no suitable annotation tools pub-
licly available. The used software for the presented dataset will be
open sourced on GitHub separately.
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