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Abstract: This paper presents GorillaVision, an open-set re-identification system for gorillas in the wild. Open-set re-identification
is crucial to identify and track individual gorillas the system may not have previously encountered, thereby enhancing our under-
standing of gorilla behavior and population dynamics in dynamically changing wild environments. The system adopts a two-stage
approach, in which gorilla faces are first detected with a YOLOv7 detector and subsequently classified with a custom neural
network model. The classification model is based on a pre-trained Vision Transformer, which is fine-tuned with Triplet Loss
to compute embeddings of gorilla faces. Such embeddings can be relied upon to obtain a similarity measure between gorilla
faces and thus also between individual gorillas. Classification is then performed on these embeddings with a k-nearest neigh-
bors algorithm. We evaluate our method on two heterogeneous datasets and show that our approach yields minor gains over
the state-of-the-art YOLO detector in a closed-set scenario. In an open-set scenario, our model can deliver high-quality results
with an accuracy of 60 to 90%, depending on the dataset quality and the number of individuals. Our code is accessible on
https://github.com/Lasklu/gorillavision.

1 Deep Learning in the Wild

In light of the current ecological crisis and the increase in space
taken up by human society, many wild animals are in danger of
becoming extinct. According to the Red List of threatened species
issued in 2008 by the International Union for the Conversation of
Nature, more than 25% of species risk extinction [12, 37]. Primates
are particularly endangered, with about 60% of primate species
under the threat of extinction [12]. Eastern and western gorillas
are classified as endangered species with a decreasing population
size [37]. To adopt appropriate conservation measures, a thorough
understanding of the population in terms of abundance, species dis-
tribution, and its behavior in the habitat is essential [8]. This, among
other things, leads to a need to monitor the population. However,
many established methods to achieve this require expert knowl-
edge and effort to manually process collected data, for instance,
tagging gorillas or analyzing DNA to re-identify them. Modern
re-identification approaches for wildlife use camera traps that cap-
ture images or videos of wildlife without being intrusive. Typically,
substantial expertise is necessary to discern the identity of individ-
ual animals in such footage. Over the past years, computer vision
has advanced numerous deep learning approaches to re-identify
objects, humans, and animals [8, 9, 24, 25, 28]. These approaches
exhibit substantial potential for large-scale automated monitoring
of wildlife. However, changes in illumination, image resolution,
and environmental interference make re-identification challenging.
Moreover, not all individuals of a wild population are typically
known when starting the monitoring process (open-set problem), as
new gorillas may be born or unknown individuals may appear dur-
ing monitoring. Novel approaches for re-identification do support
open-set re-identification, in which individuals not present in the
training set can be distinguished during classification. There is prior
work on deep learning approaches to re-identifying primates, such
as chimpanzees, lemurs, or golden monkeys [9]. However, open-
set re-identification for gorillas in the wild has not previously been
addressed. In this paper, we present GorillaVision, a two-stage

Fig. 1: Example of an image captured by a camera trap in the rain-
forest in the Republic of Congo.

system for re-identifying gorillas in the wild that is able to gen-
eralize to gorillas not included in the training set. The first stage
detects the faces of gorillas based on the YoloV7 Object Detection
System developed by Wang et al. [38]. The second stage uses a
Vision Transformer-based architecture along with a Triplet Loss to
compute high-dimensional embeddings, which serve as input for a
k-nearest-neighbor classifier. The latter is used to label the detected
gorillas. With the help of an automated re-identification system of
gorillas, existing databases of wildlife footage could be analyzed to
aid further research in gorilla conservation measures.

2 Background & Related Work

Object Detection: Detecting relevant objects of interest within an
image is one of the most fundamental tasks in computer vision.
Region-based deep Convolutional Neural Networks (R-CNNs) are
among the most popular methods for object detection, with numer-
ous variants seeking to improve their efficiency, performance, and
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robustness against lighting conditions and varying environments.
Examples of these include Mask-RCNN, Faster R-CNN, and Granu-
lated R-CNN [3, 14, 16, 26]. A faster approach compared to R-CNN
is the YOLO Real-Time Object Detection system, which is based on
a single pass of the image through the model. The approach divides
the image into a grid and predicts weighted probabilities for bound-
ing boxes over this grid [27, 39]. Other approaches with comparable
performance include the Single Shot MultiBox Detector (SSD) and
RetinaNet [19, 21].

Human Face Identification: Over the past three decades, human
face recognition and identification have been a prominent area of
research within computer vision [1]. Modern face re-identification
approaches often begin with face recognition. This is then followed
by face identification, which usually involves learning meaning-
ful features of the input image with the help of CNNs and then
extracting a generalized representation of the faces [24]. Such repre-
sentations are mapped to a vector space in which images belonging
to the same class have a low Euclidean distance and images from
different classes have a high distance. This is a form of distance
metric learning, in which the goal is to minimize intra-class vari-
ance in the learned representations, while maximizing inter-class
variance [18, 29]. In order to identify to which individual a face
belongs, a nearest neighbor search can be conducted with optimized
search algorithms [4]. This approach allows identifying individuals
that are not present in the training set. DeepFace is one of the ear-
lier deep learning approaches for face re-identification, which was
outperformed by VGGFace and FaceNet [31, 32, 34]. FaceNet incor-
porates a Triplet Loss, which seeks to minimize the distance between
samples from the same class and maximize the distance between
samples from different classes, thus directly learning a generalizing
similarity network [29]. A comparable approach is the Contrastive
Loss for Bi-Encoder Networks [5, 29], which, however, was found
to be outperformed by Triplet Loss for the domain of human face
re-identification [17].

Animal Re-Identifcation: Re-identifications methods are not lim-
ited to general objects or humans, but have as well been applied
to animals in areas such as cattle re-identification [2], pet re-
identification [35], and wildlife monitoring [8]. Approaches here
mostly focus on using facial features for identification, but are not
restricted to these. Moskvyak et al. show the benefits of using pose
invariant embeddings from features such as patterns on the body
[23]. Guo et al. show the usage of R-CNN for face detection of pri-
mates in the wild and identification with tri-attention networks [15].
Triplet Loss has been shown to be a suitable loss function, per-
forming well in learning embeddings that generalize well [24, 28].
Furthermore, the identification of the pose of the individual is able
to improve results, by using the estimated pose to normalize the
image [20, 40]. Deyban et al. present a new method called PrimeNet
for re-identification of primates based on faces and show the success
for lemurs, golden monkeys, and chimpanzees [9].

Great Ape Recognition and Re-Identification: Gorillas belong to the
family of the great apes; however, there is only limited work on
gorilla recognition and even less on re-identification, in part due
to the lack of a publicly available dataset. More extensive work
exists for chimpanzees, with datasets such as the C-Zoo and C-Tai
dataset∗. Freytag et al. present a system for identifying chimpanzees
in the wild using log-Euclidean CNNs to learn facial representa-
tions [13]. A further deep learning approach based on Single Shot
MultiBox Detectors uses video tracks to exploit available informa-
tion for facial re-identification of chimpanzees [30]. As mentioned
above, PrimeNet has also been shown to successfully achieve a re-
identification of chimpanzees [9]. The only work on the topic of
gorilla re-identification to the best of our knowledge is the work
by Brookes and Burghardt [6] on gorillas from the Bristol Zoo, and
the work by Brust et al. [7]. Brookes and Burghardt use a YoloV3

∗https://github.com/cvjena/chimpanzee_faces

Fig. 2: Amount of images per class in SPAC-Gorilla dataset. The
red line marks the threshold of three that we require for individuals
in our dataset.

model for face recognition and identification, while Brust et al. use
the YOLO model for face detection, extract features with a BVLC
AlexNet model, and then use a support vector machine for classifica-
tion. With this approach, the latter achieved a re-identification accu-
racy of 62.4%; however, their dataset is not publicly available [8].
Importantly, both approaches lack the ability to identify new gorillas
that are not present in the training set (open-set identification), which
is what our approach seeks to solve.

3 Datasets

We evaluate our model using data from two sources: SPAC-Gorilla,
which contains a large number of individuals in the wild with only a
few images per individual, and Bristol∗, which is publicly available
and features a few zoo-housed individuals, but with a large number
of images per individual. Both datasets lack landmark annotations,
such as eyes, nose, and mouth, which could be used to align images
for improved predictions [9, 23].

Bristol: The Bristol dataset consists of 5,400 images from seven
individuals with an average of around 771 images per individual. The
images are frames from video footage captured for over six weeks
at the Bristol Zoo and manually annotated by experts from the zoo’s
primate division [6]. The labels of the dataset represent the bound-
ing boxes around the gorilla faces. However, the gorilla face images
have high variance in resolution, with an uneven distribution over
the different classes (individuals).

SPAC-Gorilla: The SPAC-Gorilla dataset contains 823 images from
96 individuals, with an average of eight images per individual. The
images in this dataset are manually annotated frames from video
footage done by wildlife researchers. The footage was captured at
Odzala-Kokoua National Park, Republic of the Congo, over a time
span of 6 months with camera trapping devices. The original data
exhibits a high variance in the number of images per individual,
with some individuals having only one image, while others have
46 images. For simplicity, in the train, validation, and test splits,
we prune away individuals with fewer than three images. This also
serves to conform with our loss function (see Section 4.2). The
data distribution is plotted in Figure 2, with the red horizontal line
indicating the threshold of three images per individual.

∗https://data.bris.ac.uk/data/dataset/

jf0859kboy8k2ufv60dqeb2t8
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3.1 Dataset Splits

In the following, we briefly describe the most relevant splits and the
hypotheses we attempt to evaluate. All datasets are based on cropped
images of gorilla faces and are used for Stage II of our approach,
while Stage I merely uses the Bristol Zoo training data.

The datasets are split into three sets for the identification phase:
train, database, and eval. The train set is further split into training
and validation subsets, which are used to train the model to produce
embeddings that enable the subsequent analyses. The database set
consists of samples that are used to train the classification algorithm
based on the previously obtained embeddings. The eval set is used
for final model evaluation and computing quality metrics.

We distinguish two task setups: The open-set and closed-set sce-
narios. In the closed-set scenario, we sample a certain percentage
p of all available images to construct the training set. The remain-
ing 1− p percent of the data is used for evaluation. In order to
avoid overrepresenting certain classes from our imbalanced dataset,
the evaluation set is constructed by randomly sampling p percent
of the images per individual. In the open-set scenario, we select
p percent of classes (individuals) for the training. The training set
is then formed by taking all available images of each of these
individuals. For the remaining 1− p percent of individuals, 30%
of the images of that individual are used for evaluation, and the
remaining 70% constitute the database. Additionally, we always add
the training samples to the database set for both scenarios. This
makes the datasets closer to the real-life scenario, in which as many
classes (individuals) as possible are in the database, thus making the
classification task more challenging.

3.2 Dataset Subsets

Additionally to SPAC-Gorilla and Bristol we use several additional
subsets for our experiments:

1. SPAC-Gorilla > 6: The SPAC-Gorilla dataset with all individuals
that have more than six images. This dataset is used in combina-
tion with SPAC-Gorilla to explore how individuals with only a few
images (<6) affect the results.

2. Bristol 10 (20, 50, 100, 200, 400) Images: These datasets contain
a precise predetermined amount of images per individual from the
Bristol dataset. We aim to use this to investigate to what extent the
specific number of images available in the training set influences the
prediction results.

3. Bristol-SPAC-Gorilla: This dataset contains all individuals from
both the Bristol dataset and the SPAC-Gorilla dataset. However, the
database and eval set contain only images from the SPAC-Gorilla
dataset. We use this dataset to analyze if the results improve by incor-
porating more individuals, especially individuals with many more
samples, to the training set.

4 GorillaVision

In this section, we provide a comprehensive overview of the architec-
ture of the GorillaVision system, including data preprocessing steps,
loss calculation, and details on the specific implementation of face
detection and classification.

4.1 Overall Architecture

GorillaVision identifies gorillas based on a two-stage approach, as
shown in Figure 3: First, it applies a face detection model on raw
images in the wild to detect the presence of gorillas (Detection
Phase). For this, we use the real-time object detector YoloV7 [38],
which we fine-tune on the 5,400 labeled gorilla faces included in the
Bristol Zoo dataset. The detected faces are then cropped, and passed
to the second stage, which classifies the detected faces (Identification
Phase).

As described in the introduction (see Section 1), there is a require-
ment that not only known gorillas should be identified but also those
that are not yet known to the model. To meet this requirement, the
second stage of our system learns embeddings such that images of

the same individual are located close to each other, and images from
different individuals are located further away. Thus, we build a repre-
sentation of each individual in a high-dimensional vector space that
represents semantic and contextual information, similarly as in the
FaceNet architecture [31].

The embedding computation stage consists of several steps: The
image of a cropped face of a gorilla serves as input to the model,
since experts are also able to re-identify gorillas solely on this infor-
mation. During training, data augmentation is applied to this input.
We use geometric transformations such as rotations and horizontal
flips, intensity augmentation such as applying random planckian jit-
ter to change the illumination, and erasing, which covers random
parts of the image with black boxes. With this, we aim to account
for the low amounts of data per individual and allow our model to
generalize better. The pre-processed image is then fed into a Vision
Transformer. We use the vanilla Vision Transformer (ViT) proposed
by Dosovitskiy et al. [11]. On top of the it, we include a fully-
connected linear layer, which calculates the embeddings from the
output of the ViT. Finally, we apply a k-nearest-neighbor classifier
to the embeddings to determine the label of each gorilla.

4.2 Loss Computation

To train the embedding model, we rely on the Triplet Loss, a loss
function for learning effective representations of data that is widely
used in re-identification. The basic idea is to learn the embeddings
such that instances of images of the same gorilla reside closer
together in the vector space, while instances of different gorillas
remain further apart. This requires a loss function that maximizes
the distance between embeddings of images of the same gorilla and
minimizes the distance between embeddings of different gorillas. To
achieve this, we need three images for the calculation of the loss,
which together form a triplet:

• Anchor Input A: The reference input, which is compared to two
other images

• Positive Input P : An image sharing the same label as the anchor
input

• Negative Input N : An image that has a different label than A (and
P )

Let T be the set of all triplets. Then, for any triplet in T , it should
hold that the embedding of the anchor is closer to the embedding of
the positive input than it is to the embedding of the negative input by
some margin α. This is encouraged by the following constraint:

d(f(A), f(P )) + α < d(f(A), f(N)), ∀(A,P,N) ∈ T . (1)

With this, the triplet loss is calculated as follows:

L(A,P,N) =

max(0, d(f(A), f(P ))− d(f(A), f(N)) + α)
(2)

Here, the function f computes the embeddings of the respective
image, and the function d is a distance measure.

Since iterating over all possible triplets is both computationally
infeasible and unnecessary, given that most triplets easily fulfill the
constraint, the challenge becomes selecting triplets that result in
high-quality embeddings.

4.3 Triplet Selection

We categorize triplets into three different types: Easy triplets con-
form to the constraint given in Equation 1. Therefore, they have
a loss of zero and do not help in training. Triplets with a neg-
ative input closer to the anchor input than the positive input are
called hard triplets. For these, the condition d(f(A), f(N)) <
d(f(A), f(P )) holds. Between these lie semi-hard triplets, which
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Fig. 3: GorillaVision
The system consists of two stages: The detection phase and the identification phase.

we use for GorillaVision. For such triples, the negative input is far-
ther away than the positive input, but not by the required margin, i.e.,
d(f(A), f(P )) < d(f(A), f(N)) < d(f(A), f(P )) + α.

5 Main Results

5.1 Stage I: Detection

The first stage of the GorillaVision system locates gorilla faces
within images. We use YOLOv7, which we fine-tune on Bristol
using stochastic gradient descent. Our model achieves an F1-Score
of 0.97 and mAP@0.5 of 0.991 on the test data and is thus well-
suited for our application. The model does not produce any false
positives (identification of an object as a gorilla) on the test dataset.
Only 1% of the gorilla faces are not correctly recognized as goril-
las. Hence, this component yields sufficiently accurate detections for
the subsequent identification step in Stage II, which is much more
challenging.

5.2 Stage II: Identification

We evaluate our results in two main scenarios: The closed-set sce-
nario, in which all possible classes are already present in the training
set, and the open-set scenario, in which some classes are present
only in the test set and not in the training set. We only evaluate the
predictions for these new classes in the open-set scenario.

We evaluate our GorillaVision model described in Section 4. The
implementation is in PyTorch-Lightning and is partly based on a Ten-
sorflow implementation by Olga Moskyvak∗. Additionally, we use
a Triplet Loss implementation for PyTorch† with semi-hard sam-
pling that is based on the FaceNet approach [31]. We use the Vision
Transformer PyTorch implementation as the backbone of our model,
which is pre-trained on ImageNet1K V1. The Vision Transformer we
use is the base version with an input size of 32x32 and 86M parame-
ters. We fine-tune the backbone with our datasets by using the Adam
optimization algorithm.

5.2.1 Baseline: The only method for gorilla re-identification in
the wild is introduced by Brust et al., which yielded an accuracy of
62.4% on an unpublished dataset comprising 2,000 images [8]. In a
different context, Brookes et al. pursued the re-identification of goril-
las within a controlled zoo setting utilizing the Bristol dataset [6]
and the YOLOv3 model. Despite our focus on wild gorilla re-
identification, we adopted a slightly adapted version of the method-
ology used by Brookes et al. This decision was motivated by the
accessibility of the dataset and the quick model re-implementation.

Our validation confirms that our adapted model performs com-
parably under the simpler, controlled circumstances of the Bristol

∗https://github.com/olgamoskvyak/reid-manta
†https://github.com/alfonmedela/triplet-loss-pytorch/

Table 1 Closed-Set Accuracy.

Dataset Baseline GorillaVision

Top-1 Top-5 Top-1 Top-5

Bristol 0.91 0.90 0.95 0.99
SPAC-Gorilla 0.67 0.79 0.73 0.84
SPAC-Gorilla > 6 0.84 0.94 0.88 0.96
Bristol-SPAC-Gorilla 0.01 0.05 0.49 0.75

dataset. Subsequently, we assess the model’s efficacy in the more
demanding in-the-wild context using our SPAC-Gorilla dataset. We
further improved Brookes et al.’s approach by using the more recent
ultralytics PyTorch implementation of YOLOv5 for classification‡

instead of the YOLOv3 model. This modification allowed us to repli-
cate the outcomes on the Bristol dataset and establish a benchmark
for the SPAC-Gorilla dataset.

It is important to note that the baseline mentioned above can only
be used for closed-set re-identification. Nevertheless, it provides a
relevant benchmark for the evaluation of our model.

5.2.2 Results: All results for our model reported in this section
use the Vision Transformer as a backbone without any additional
pooling layer or dropout as final layers. Furthermore, a learn-
ing rate of 1× 10−5, no L2 regularization, a batch size of 128,
the same classes (individuals) in training- and validation set, 800
epochs, and an embedding size of 256 are used. The classification
is obtained using the k-nearest-neighbours algorithm (wscikit-learn
implementation) with k = 5 using Euclidean distance.

We utilize k-fold cross-validation to compute the reported results
for our model. The overall accuracy is calculated as the mean of the
accuracy scores obtained across all folds. The cross-validation folds
still follow the open-set and closed-set formats specified in Section 3.
We use k = 4 folds because we have limited data available and want
to use as much as possible for training, but at the same time want
to ensure that there are enough different individuals in the test set to
make the classification more challenging as in the real-life scenario.
With this fold size, we use 75% of the available data for training and
validation and the remaining 25% for testing for each fold. At the
same time, we ensure that in the closed-set approach, every image
is in the test set once. In the open-set approach, we ensure that each
individual is present in the test set once.

Closed-Set Results: The results for the closed-set scenario are
reported in Table 1. It is important to note that the top-5 accuracy
scores on the Bristol dataset are not particularly informative, as there
are only 7 classes in the database in total.

As we can observe, our model achieves a higher accuracy than the
baseline. When comparing our results for SPAC-Gorilla and SPAC-
Gorilla > 6, we can see that if we only consider individuals with

‡https://github.com/ultralytics/yolov5
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more than 6 images, the results improve significantly, since the more
images are available for each individual in our dataset, the better
the clusters that can be computed for exactly this individual. The
results on the Bristol dataset supports this observation, as it has
many images available and the accuracy of the results is very high.
Hence, if we have many images of good quality available for train-
ing, our model can predict the identity of a gorilla on new images
fairly reliably.

The baseline by Brust et al. is found to deliver particularly sub-
par results on the Bristol-SPAC-Gorilla dataset. We assume that this
is because the gorillas in the Bristol dataset have more than 5,000
images in total (distributed over seven gorillas), while the gorillas
from the SPAC-Gorilla dataset only have about 500 images in the
training set (distributed over 96 gorillas). Due to YOLO’s sampling,
they only get little attention during training, leading to poor results.

In Figure 4, we visualize the computed embeddings with Principal
Component Analysis (PCA) for the Bristol Zoo dataset. We can see
that most embeddings are well-separated and individual clusters are
easy to distinguish, with some misclassified samples in each cluster.

Fig. 4: Closed-set embeddings for the Bristol dataset
Dark blue = 0, Orange = 1, Red = 2, Light Blue = 3, Green = 4,
Yellow = 5, Violet = 6.

A manual analysis of misclassified samples shows that those sam-
ples that lie in the wrong cluster (close to the center of a wrong
cluster and far away from their actual cluster) are primarily images
that are very hard to identify, such as the ones shown in Figure 5.
Future research could build a system to identify such images and
adopt special strategies to reduce their impact.

For the images that lie between clusters 2, 3, 4, 5, we observe a
large number of misclassifications because many images of differ-
ent individuals lie close to each other in this space. From a manual
analysis of these images, we could not identify a specific reason why
they are not correctly classified within the cluster. Our hypothesis is
that most of the affected images can still be deemed part of the cor-
rect cluster, but that the inter-cluster distances between clusters 2, 3,
4, 5 are insufficiently large. Hence, fuzzy clusters exist, which can
lead to misclassifications.

Fig. 5: Samples that are clearly located in a wrong cluster.

Open-Set Results: In the open-set scenario, the challenge shifts from
correctly classifying images of known classes to generalizing the
classification task to unknown classes, i.e., gorilla individuals. The

Table 2 Closed-Set vs. Open-Set Accuracy. Values in parentheses are the
top-5 accuracy.

Dataset Closed-set Open-set

Top-1 Top-5 Top-1 Top-5

Bristol 0.95 0.99 0.80 0.98
SPAC-Gorilla 0.73 0.84 0.63 0.81
SPAC-Gorilla > 6 0.88 0.96 0.80 0.89
Bristol-SPAC-Gorilla 0.49 0.75 0.41 0.68

corresponding results are given in Table 2 and are contrasted with
the closed-set results. Due to fluctuations in the obtained result accu-
racy of ±10%, the reported results for the Bristol and SPAC-Gorilla
dataset are the mean of seven different train-database-eval splits.

When comparing our open-set results to the closed-set results, our
model is also able to generalize well to new classes. The comparison
of SPAC-Gorilla vs. SPAC-Gorilla > 6 and SPAC-Gorilla to Bristol
shows that it is essential to include as many images as possible per
individual. However, by comparing the validation loss curves from
SPAC-Gorilla and SPAC-Gorilla > 6 and inspecting the embeddings,
we can conclude that the significant improvement between these two
datasets is also caused by the fact that the k-nearest neighbor classi-
fication works better when having more images in the database for
each individual. This is the case for SPAC-Gorilla > 6 with a min-
imum of six images in the database and two for testing, whereas
the SPAC-Gorilla dataset sometimes only has two images in the
database. Additionally, fewer individuals are in the database, making
the classification problem less challenging (37 vs. 115 individuals).
Considering these important factors for the comparison of the SPAC-
Gorilla and SPAC-Gorilla > 6 results, we conclude that including as
many individuals as possible is equally important as having as many
images as possible per individual.

When comparing the SPAC-Gorilla dataset results to the Bristol-
SPAC-Gorilla dataset results, we can see that using only the SPAC-
Gorilla data for training performs better. This is because the data is
distributed unevenly over the individuals: Since we have more than
5,500 images of individuals from the Bristol dataset and only 540
images from the SPAC-Gorilla dataset in our training dataset, the
batch sampling mainly picks images from the Bristol dataset. Hence,
the majority of learning is performed on the same individuals rather
than on learning features from a more diverse set of individuals,
which would allow the model to generalize well.

A manual analysis of misclassified images shows that 11% are
of poor quality, and it is nearly impossible to identify anything on
them. In 43%, the eyes of the gorilla and the surrounding area are
not visible. This leads us to conjecture that the eyes are a critical
feature for re-identification. Furthermore, 26% are classified as the
wrong individual but are classified as an individual within the correct
gorilla group. For tasks such as social network analysis, the model
could hence be used to predict to which group a gorilla belongs with
higher accuracy.

6 In-Depth Analysis of GorillaVision

In the following, we analyze and compare the properties of the
systems in further detail based on additional experiments.

6.1 Backbone Model

As depicted in Figure 3, GorillaVision’s embedding learning relies
on a large pre-trained backbone. The choice of backbone can signifi-
cantly impact system performance, so we evaluate the two following
models:

InceptionV3: The InceptionV3 model developed by Szegedy et
al. [33] is a deep convolutional neural network designed to be par-
ticularly efficient while maintaining a high quality. We use a version
of InceptionV3 pre-trained on ImageNet [10]. Additionally, we add
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Table 3 Comparison of Backbone Models. All results are obtained without
optimizations such as data augmentation.

Model InceptionV3 ViT

Scenario Closed Open Closed Open

Bristol 0.80 0.39 0.92 0.78
SPAC-Gorilla 0.35 0.34 0.63 0.58
SPAC-Gorilla > 6 0.50 0.16 0.80 0.44

Fig. 6: Effectiveness of GorillaVision on different amounts of
training images in the closed- and open-set scenarios.

a global pooling layer after the backbone and before the fully con-
nected layer for embedding computation. This pooling layer takes
the averages over each feature map, reducing the dimensionality.
This mechanism serves to mitigate overfitting [24].

Vision Transformer (ViT): The Vision Transformer was originally
presented by Dosovitskiy et al. [11]. In contrast to InceptionV3
and other traditional vision models, it is not based on convolutional
layers for feature extraction but uses a self-attention mechanism
introduced by Vaswani et al. [36]. Its core idea is splitting the image
into a two-dimensional array and then considering the associations
between these arrays using attention.

For both approaches, we truncate the top layer of the backbones to
obtain features instead of label probabilities for different classes. As
we can see in Table 3, the Vision Transformer outperforms the Incep-
tionV3 backbone model. The ViT increases the accuracy on average
in the closed-set scenario by 42.5%. This improvement is even more
significant in the open-set scenario, as the ViT nearly doubled the
accuracy compared to InceptionV3. This improvement in accuracy
comes with a higher computational cost. While the InceptionV3
model has 24 million parameters, the ViT has 86 million.

6.2 Number of Samples Experiments

Labeling images is a very time-consuming task and, in certain cases,
can only be performed by experts. For example, in the case of goril-
las, when there are many individuals (96 individuals in the case of
the SPAC-Gorilla dataset), there are likely to be individuals that
resemble each other and are easily confused by non-experts. For
these reasons, the available training data is limited, and an automated
identification solution should also achieve high-quality results using
limited amounts of data.

To investigate this further, we used the Bristol dataset to analyze
how well our method (open- and closed set) performs compared to
the baseline with varying amounts of images per individual in the
training data. We used k ∈ {10, 20, 50, 100, 200, 400} images for
training. As a baseline, we used the YOLOv5 model for classifica-
tion that is similar to the approach of Brooks et al., as described in
5.2.1. Figure 6 plots the results of this experiment. It can be seen
that YoloV5 performs slightly better than GorillaVision on small

amounts of data, up to 50 frames per individual. YoloV5 achieves
an accuracy of 44% on 10 images per individual and an accuracy
of 51% on 20 images per individual. GorillaVision only achieves
accuracies of 38% and 43%, respectively. However, from 50 images
and upwards, GorillaVision achieves a comparable, if not better,
performance to the baseline.

The open set scenario behaves differently from the closed set sce-
nario: If the accuracy is still 53% at ten images per individual, it
drops sharply to 40% at 20 images. This might be due to varia-
tions in classification difficulty for this small amount of data. It then
increases up to 200 images per individual, to approximately 74%.
This shows that the GorillaVision model in the open-set scenario is
successfully able to learn generalized embeddings of gorilla faces
with limited amounts of data. Nonetheless, the amount of training
data clearly has an impact on the quality of the model.

6.3 Discussion

Given the results, we see several avenues to further improve the
results of GorillaVision.

Detecting New Individuals: Our approach lays the foundation for
new individuals to be detected without retraining the model. Its
potential extends beyond gorilla re-identification; the techniques
applied here can be applied to other wildlife species as well. How-
ever, the final verdict of whether to classify an individual as unknown
still needs to follow, e.g., by learning a threshold for when the dis-
tance between a prediction and all its neighbors in the database is
too large. New individuals could then be added to the database with
a new label.

Video Data: Since footage of wildlife is often captured as video
data, a pipeline to process videos would improve the results fur-
ther. If an individual can be identified and tracked over multiple
frames, the results could then be aggregated to determine the most
likely identity of the gorilla in a more robust manner. This approach
has also been applied in multiple related scenarios and has led to
significant improvements in results [6, 30].

Body Data: We could incorporate the body of gorillas for improved
identification. Gorillas exhibit substantial variation in their bodily
appearance, especially in datasets that include a diverse set of goril-
las in different age groups. We have already worked on detecting
the body of gorillas, but this has not led to satisfying results yet due
to bad ground truth data. More work could be done to improve the
results here. Furthermore, a similar approach proposed by Makowski
et al. [22] could be applied. For biometric identification, they con-
sidered different ways of including body information and were able
to improve their results.

7 Conclusion

This paper presents GorillaVision – an open-set re-identification
system for gorillas in the wild. It employs a two-stage approach
by detecting a gorilla face and then classifying the cropped image.
GorillaVision is the first gorilla-specific model that identifies known
and unknown gorillas. The system can flexibly use different kind
of backbone models. We show that a Vision Transformer back-
bone model outperforms CNN-based approaches and is suitable for
learning high-quality embeddings that aid in distinguishing different
individuals.

We show on two different datasets that the system attains com-
parable results to the state-of-the-art in a closed-set scenario. With
sufficient training data, in terms of images per individual and the
total number of individuals, our model can produce high-quality
results in an open-set scenario, which is a key desidaratum for re-
identification. Furthermore, an in-depth analysis investigated several
abbreviations of the model and how they affect the results.

We aim to further facilitate research and usage in the field by
releasing our source code.

Camera Traps, AI, and Ecology
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