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Abstract: The Grévy’s zebra, an endangered species native to Kenya and southern Ethiopia, has been the target of sustained
conservation efforts in recent years. Accurately monitoring Grévy’s zebra populations is essential for ecologists to evaluate ongoing
conservation initiatives. Recently, in both 2016 and 2018, a full census of the Grévy’s zebra population has been enabled by
the Great Grévy’s Rally (GGR), a citizen science event that combines teams of volunteers to capture data with computer vision
algorithms that help experts estimate the number of individuals in the population. In this work, we explore complementary, scalable,
cost-effective, and long-term Grévy’s population monitoring using a deployed network of camera traps at the Mpala Research
Centre in Laikipia County, Kenya. Unlike the human-captured images collected by large teams of volunteers at GGR events,
camera trap images are characterized by poorer quality, high rates of occlusion, and high spatio-temporal similarity within image
bursts. We employ an image filtering pipeline incorporating animal detection, species identification, viewpoint estimation, quality
evaluation, and temporal subsampling to compensate for these factors and obtain individual crops from camera trap images of
suitable quality for re-ID. We then employ the Local Clusterings and their Alternatives (LCA) algorithm, a hybrid computer vision
& graph clustering method for animal re-ID, on the resulting high-quality crops. Our method efficiently processed 8.9M unlabeled
camera trap images from 70 camera traps over two years into 685 encounters of 173 unique individuals, requiring only 331
contrastive same-vs-different-individual decisions from a human reviewer.

1 Introduction

The population of Grévy’s zebras experienced a dramatic decline
beginning in the 1970s largely due to hunting and competition for
food and water resources with local pastoral communities. Estimates
have placed the number of Grévy’s zebras remaining in the wild at
under 2,000, with the vast majority in the Samburu region of cen-
tral Kenya. Due to extensive conservation efforts by the Kenyan
and Ethiopian governments as well as environmental NGOs, the
population of Grevy’s zebras have stabilized in recent years [1].

Accurately censusing Grévy’s zebra populations is critical for
ecologists to evaluate these existing conservation efforts. Develop-
ing and maintaining a census of known individuals requires effective
animal re-identification methods to ensure that only unique individ-
uals are included in population counts [2]. A popular method for
population size estimation is “capture-mark-recapture" [3]. By this
method, a set of animals in the target population is first captured and
marked, then a second set of animals is independently recaptured,
and finally a population estimate formed from the number of ani-
mals captured twice. This method, however, proves difficult to scale
to large populations and territories, and may lead to inaccurate pop-
ulation estimates when animals are not confined to the study area
and are capable of evading tagging [4, 5]. Further, the tagging meth-
ods used in population estimation studies (such as ear tags and radio
collars [6–8]) can be excessively expensive and time-consuming to
implement in the field, and overly harmful to the animal [9].

A modern alternative to manual mark-recapture studies that does
not have these limitations is exemplified in the Great Grévy’s Rally
(GGR) events of 2016 and 2018 where volunteers spread over the
range of Grévy’s zebra to photograph as many animals as possible
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Fig. 1: Map of several encounters of a single individual within
Mpala Research Centre identified from camera trap data by our
method and requiring minimal human labeling.
over two consecutive days. Relying on the distinctive appearance of
an animal itself as a means for identification, a combination of algo-
rithmic and human curation efforts produced population estimates
that have been accepted as definitive by the Kenyan Wildlife Service
and the IUCN [10].

Complementary to the focused burst of human effort for the GGR
photographic events, we explore the possibility of using a fleet of
camera traps to collect the data needed for population monitoring.
For animals that allow for sight-based ID, images taken by camera
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traps are a potentially cost-effective and non-invasive method to re-
identify individuals and obtain robust population estimates. Unlike
alternative methods such as tagging or even the field photography of
the GGR events, camera traps do not require the physical presence
of field researchers for animal re-identification; this ensures that the
natural behaviors of animals are not disrupted and saves considerable
time and resources [11, 12].

However, analysis of camera trap images by human observation
alone is not practical. In recent years, computer vision algorithms
have been shown to present a highly accurate and standardized
method for camera trap image analysis. Computer vision techniques
have seen significant success in automated species detection & iden-
tification from camera trap images, especially with advances in deep
learning [13–17]. Accurate species ID from camera trap images has
laid the foundation for the next step in an end-to-end photographic
censusing pipeline from camera trap images: automated individual
re-ID (for reviews, see: [12, 18, 19]). However, the challenging
nature of the automatically-captured data (motion blur, occlusion,
poor lighting, far-away animals) often leads to flawed animal re-
identification even by human experts [20]. Additionally, images
captured in a burst from the same motion trigger are often highly
repetitive, leading to potential bias in automatic re-identification
if not handled carefully. In this work, we seek to adapt existing
techniques for animal re-identification in human-captured data —
particularly those developed in response to the effort required for the
GGR events — to the challenging static camera trap paradigm.

Unlike many other classification tasks with numerous and highly
similar classes, animal re-identification is an open-set classification
problem [21], with the need to assign every unique individual to its
own class and to recognize novel individuals unseen during training.
There are two key categories of animal re-ID algorithms. Rank-
ing algorithms for re-ID query an image of the target individual
against an existing database to obtain a ranking of the most con-
fident matches. Hotspotter [22] is one such texture-based ranking
algorithm that uses the SIFT [23] algorithm to extract salient fea-
tures from the query image and subsequently a nearest neighbor
search to match the query image against the database. The algorithm
is specialized for striped and spotted animals, and it has been used
for re-ID of Grévy’s zebra [22, 24] and several other animal species
from camera trap data [25–27]. Verification algorithms for re-ID, on
the other hand, do not require querying an existing database; instead,
a verification algorithm simply decides whether two images contain
the same individual. An example of a verification algorithm is the
Verification Algorithm for Match Probabilities (VAMP) [28], a ran-
dom forest classifier [29, 30] that receives two images and decides
if they contain the same animal, different animals, or are incompa-
rable. Lastly, contrastive deep learning algorithms, such as the Pose
Invariant Embedding (PIE) network [31, 32], can learn a global fea-
ture embedding (instead of handcrafted features with Hotspotter &
VAMP) for a particular image, allowing for distance-based compar-
isons with the feature embeddings of other images in a database;
this allows PIE to serve as both a ranking and verification algorithm
simultaneously. However, unlike Hotspotter and VAMP, PIE (and
deep learning algorithms in general) requires a significant amount
of training data. Instead, when considering a population without
individual-level ground truth labels readily available, it is preferable
to use classical computer vision for ranking and verification that can
be easily bootstrapped with minimal human supervision.

In this paper, we use Hotspotter and VAMP in conjunction with
the Local Clusterings and their Alternatives (LCA) decision man-
agement algorithm [33, 34] for Grévy’s zebra re-ID. Like other
animal and human re-ID systems [35–37], the LCA algorithm offers
a human-in-the-loop approach to dynamically cluster annotations by
individual and request human reviews for verification hard cases. To
the best of our knowledge, this marks the first use of interactive /
error-driven clustering algorithms like LCA for animal re-ID from
exclusively camera trap data for any species.

2 Methods

2.1 Camera Trap Dataset

We use images collected from a network of 70 camera traps dis-
tributed around the Mpala Research Centre in Kenya’s Laikipia
Plateau. The network has collected 8.9 million images over the past
two years of deployment. There are four types of camera trap place-
ment schemes in the network: systematically in a grid, at “magnet"
sites (e.g. salt licks), as well as expert-targeted & random placement
along roads (see Fig. 2).

2.2 Automated Species Identification

Prior to re-ID, the raw camera trap images were first passed through
a YOLO v2 species detection model [38] to localize all zebra with
a bounding box (both Grévy’s and plains zebra species), and crop
the region of the image within each bounding box for downstream
use. Localized bounding boxes crop out irrelevant and potentially
distracting background information and yield distinct annotations of
independent individuals from images that feature several animals.
YOLO v2 has shown to be more accurate for animal detection than
alternative object detection models, such as Faster R-CNN [39].
Next, the cropped regions are classified to zebra species — Grévy’s
vs. plains zebra — and viewpoint — left vs. right — by a DenseNet
model. Only right, front-right, and back-right viewpoints are con-
sidered for identification; differing viewpoints cannot be matched
with one another, as the right and left sides of Grevy’s zebra are dis-
tinct. The species and viewpoint classification model was trained on
human-captured and labeled data from the Great Grevy’s Rally in
2018 (GGR18) [34].

Finally, we wished to ensure that these annotations would be uni-
versally comparable to make verification decisions easier for both
VAMP and the human verifier. For Grévy’s zebras, this entails anno-
tations that have both the distinctive hip and shoulder chevron, which
we will call “Census Annotations" (CA) [34]. A DenseNet with a
linear classification layer, also trained on GGR18 data, was used to
decide whether an annotation was indeed a CA, and produce an asso-
ciated CA confidence score. Then, a regression network was used to
narrow the annotation region to only surround the hip and shoul-
der chevron, which was then saved as a new “Census Annotation
Region”, or CA-R [34].

2.3 Filtering Pipeline

Mark-recapture statistical models are highly sensitive to inaccurate
identifications, but are built with the assumption that not all individ-
uals are seen. Thus, it is important to prioritize the precision of our
re-identification pipeline over assigning an ID to each annotation.
One significant factor in inaccurate identification, by both humans
and algorithms, is image quality — blurry, or poorly lit annotations
are difficult or impossible to reliably identify. Filtering annotations
by quality is therefore a critical component of the re-ID pipeline,
and automated quality filtering reduces the amount of human time
and work required to rectify matching errors caused by undesirable
annotations. Here, we devise an annotation filtering scheme suitable
for re-ID from camera traps.

As already described, we only consider census annotation regions
(CA-Rs), those the show right-side viewpoints of Grévy’s zebra,
including both the shoulder and hip chevron. Beyond this, we further
filter by time of day: only annotations from images taken between
6:30 AM and 7:00 PM (sunrise and sunset at Mpala) were kept
for re-ID. Due to the camera trap settings, images taken during the
daytime are optical (RGB) and are of higher resolution (13 MP).
Nighttime images are taken with an infrared flash at lower resolution
(9 MP). Qualitatively, nighttime images are more difficult for human
reviewers than daytime images; without modification, we believed
the VAMP verification algorithm was likely to perform better on
higher contrast and quality images taken during the day.

Next, the annotations were filtered by encounter. To define the
encounters, we used an agglomerative clustering approach: for each
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Fig. 2: (Left) Location of our camera traps across the Mpala Research Centre. These cameras are placed according to four distinct strategies:
random grid, randomly along roads, at known Grévy’s territories along roads, and at magnets such as salt licks and watering holes. (Right)
Map of all Grévy’s encounters across Mpala.

Fig. 3: Example of a good and poor quality CA of an individual
within an encounter. (Left) Annotation with CA score of 0.9997; the
hip and shoulder chevrons are very clearly visible. (Right) Annota-
tion with CA score of 0.0032; viewpoint is correct but the hip and
shoulder chevrons are not clearly visible.

camera, annotations from images taken within the same minute
and in consecutive minutes were grouped together in the same
encounter. Next, the annotation with the highest Census Annota-
tion confidence score was selected from each encounter, and the
rest were discarded. As the camera traps take images in bursts, the
images in a encounter are nearly identical, and hence the correspond-
ing annotations very likely must feature the same individuals. This
step encourages matching across the best representatives from every
encounter, reducing the amount of data required but preserving the
relevant information. Experiments in [34] show that filtering in this
manner, in particular filtering for CA-Rs, does not have a significant
impact on the individual count, but dramatically reduces the human
effort required to produce it. (rephrase - later).

Lastly, the annotations were filtered for CA confidence score.
Annotations above a 0.31 confidence score threshold were kept
for re-ID. In previous work [34], a lower threshold was shown to
add incomparable annotations to the re-ID database and encourage
spurious matches, and a higher threshold was shown to eliminate
relevant sightings without a considerable increase in matching speed
and accuracy. The filtering pipeline yielded 685 right-view Grévy’s
zebra annotations across the reserve, with each representing a single
encounter (see Fig. 2).

2.4 Zebra ID Curation

The goal of the LCA decision management algorithm is to build an
identification graph with the filtered annotations, using automated
ranking & verification and delaying human intervention as much
as possible. In the identification graph, annotations are represented
as vertices, and relationships between annotations (whether positive
or negative matches) are represented as edges. The LCA algorithm

seeks to group annotations into clusters corresponding to individuals
by maximizing positive edge weights within clusters and negative
weights between clusters. This simplifies the identity labeling pro-
cess significantly: instead of being asked to identify an annotation as
one of up to 150 known individuals, reviewers are asked to compare
pairs of annotations and determine whether they belong to the same
individual or not. This contrastive task can be accomplished even by
non-experts due to innate human capacity for pattern matching — it
is similar to a game of spot the difference.

The ID graph is initialized with no edges, with every annota-
tion constituting its own cluster. For every annotation, the Hotspotter
ranking algorithm returns a list of its most confident matched annota-
tions, and LCA forms edges between the annotation and its potential
matches. Next, the VAMP verification algorithm evaluates every pair
of vertices connected by an edge and assigns an edge weight (pos-
itive or negative) based on its confidence in the match. The LCA
algorithm has two main phases. In the scoring phase, it keeps the
initial edges and weights intact. LCA iterates through every local
clustering (a single cluster or a pair of clusters) and decides if there
exists an alternative clustering that increases the sum of intra-cluster
edge weights and decreases the sum of inter-cluster edge weights. If
such an alternative clustering exists, the new arrangement is adopted.
Once there are no longer any better local alternative clusterings,
LCA proceeds to the stability phase. In this phase, LCA considers
local clusterings for which the difference between it and its next
best alternative are sufficiently small that changes in edge weights
can potentially introduce a superior alternative clustering. For such
local clusterings, LCA requests additional reviews to VAMP and the
human (if VAMP cannot litigate the review on its own) to determine
if certain edge weights must change. Once all local clusterings are
significantly better than their next best alternative, the algorithm is
considered to have converged.

3 Results

8.9 million camera trap images from the initial dataset were passed
through the species ID pipeline, yielding 84,383 zebra images
(including both plains and Grévy’s zebra). Following species and
viewpoint filtering, 23,512 right-view Grévy’s zebra annotations
remained across 3,338 distinct encounters. After excluding night-
time encounters, 1,138 daytime encounters remained. We then sam-
pled the single highest-quality annotation from each of the 1,138
encounters, as determined by our CA model, to avoid matching on
near-identical images from the same burst. We further used a score
quality threshold on CA that reduced the number of annotations to be
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Fig. 4: Data curation pipeline from unlabeled camera trap images to high-quality individually identifiable census identifications. Data is
represented in purple, models in green, and quality filtering processes in blue. The annotations remaining after this curation pipeline next have
individual features extracted using VAMP which are used as input into the LCA algorithm.

identified to 734. As a last step, we used a blurriness filter to remove
any additional challenging annotations, resulting in a final set of 685.

In order to associate these 685 annotations to clusters of indi-
viduals, the LCA algorithm requested 5,403 automated reviews by
VAMP and 331 additional human reviews; pairwise comparisons
of annotations were performed largely automatically using VAMP,
with a automation rate of 93.9%. The converged ID graph had 173
clusters, each corresponding to an individual zebra ID within the
685 annotations. On average, each individual was sighted across
1.9 static camera traps and 3.96 encounters, indicating significant
matching across space and time. See Supplementary Fig. 5 for
the distribution of encounters for each individual, and Supplemen-
tary Fig. 6 for the distribution of static camera traps that sighted
each individual. The number of individuals sighted by each camera
also differed based on its placement strategy (random grid, known
Grévy’s territories along roads, randomly along roads, and both
timelapse & motion-trigger traps at magnet sites). On average, cam-
era traps at a magnet site (e.g. salt lick, dam, etc.) sighted the most
individuals on average (8.5 per trap) and also produced the most first
individual sightings on average (5.85 per trap). See Table 1 and Sup-
plementary Fig. 7 for the distribution of total individuals sighted by
cameras of each placement strategy. Particularly, the encounters for
large individual clusters were spread across many months, with some
spanning more than a year (see Supplementary Fig. 8). Based on the
distinct encounters and cameras associated with each individual, we
can generate spatial maps of encounters for any individual across
the reserve: see Fig. 1 for a map of encounters for a particular zebra
(Individual 32).

4 Discussion

The proposed combined method of subsampling and curation has
enabled us to efficiently combine the 685 high-quality encounters in
our static camera dataset to form 173 clusters, each representing an
individual Grévy’s zebra. The use of LCA for semi-automatic, inter-
active decision-making resulted in fewer than 0.5 human reviews
per annotation. By contrast, when working only with ranking algo-
rithms, typically several — five to ten — potential matches must be
examined, and LCA includes consistency checking implicitly.

Each annotation in the cluster is representative of an encounter
with that individual at a known position and time, and enables us to
convert a set of 8.9 million unlabeled camera trap images into identi-
fied encounters that can be used as the input into a spatially-explicit
mark recapture model [40] to estimate the total Grévy’s population.
Because camera traps are monitoring long-term, in this case over
two years unlike the contained 2-day period captured by each Great
Grevy’s Rally, assumptions about no births and no deaths and no
transients in the population are invalid. It is important to note that
the ecologists at the Laikipia Zebra Project have confirmed that the
Grévy’s population at Mpala has been an open set over the period
in question: of the estimated 150 Grévy’s individuals currently seen
over repeat seasons at Mpala, only 4 are “stable" and reside on the
reserve long-term, while the vast majority (130 expert re-identified
individuals) have been seen to migrate and return periodically, driven
by water scarcity and threat of predation [41]. It is thus likely that the
camera network captured some number of transient individuals over
the two year sampling span.

Table 1 Number of individuals sighted by camera placement strategy

Total Avg. New

Random grid 16 2.29 1.43
Roadside, known territories 105 2.76 2.26
Roadside, random 9 3 0.33
Magnet 107 8.5 5.85

Limitations of the method may include imperfect CA labeling,
where annotations with seemingly high CA scores are in actual-
ity difficult to match, leading to two (or more) clusters in place
of a single cluster. Additionally, we observe that errors could also
occur via potential failures in any one of the algorithmic components
whether at the species ID or at the individual re-ID level. Human
decision failures in particular may inflate the number of individual
clusters, with ambiguous matches mislabeled by the human reviewer
resulting in more clusters than necessary. A significant focus of our
ongoing work is to further analyze these results in order to tease
these factors apart.

Lastly, while the method is currently limited to images taken
during daylight hours, an approximately equal-sized set of images
and annotations is collected at night. In recent preliminary tests, we
selected the twenty-five night time annotations having the best com-
bination of census annotation score and image contrast, and matched
them against the clustered daytime annotations produced as a result
of the work described here. For twenty of them (80%) Hotspotter
produced correct matches in the top few. This shows potential for
extending the overall method to the night-time, but many details
must be revisited due to the overall lower quality of nocturnal images
before they can be reliably included in generating enhanced census
results.

5 Conclusion

In this paper, we perform efficient semi-automated Grévy’s zebra
re-ID from camera trap data, with an algorithmic tool chain using
Hotspotter for ranking, VAMP for verification, and LCA for decision
management. Our method can be used even by non-zebra experts
[34], as it only requires contrastive comparisons between pairs of
individuals instead of matching each individual into the previously
identified population. Ultimately, this curational re-ID process found
173 distinct individuals in camera trap data collected across a two
year period at the Mpala Research Centre.

Going forward, we aim to further refine the filtering pipeline to
improve matching with fewer human reviews and reduce attrition
of data through the pipeline. We also are excited to further explore
the results of the method, for example by adjusting the CA score
threshold and observing how this affects LCA convergence behavior
& results. We also hope to further adapt LCA to enable tempo-
ral sequences and spatial relationships to be taken into account, to
enable us to better make use of the additional images of the individ-
uals from each camera trap image burst and the spatial structure of
the habits of individuals over time. Finally, and along similar lines,
we hope to introduce “short-circuiting" to reduce human reviews
when spatio-temporal constraints imply that there is no possibility
of a match.
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Supplementary Figures

Additional data visualization and analysis figures have been included
in this section to give additional context to the reader.
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Fig. 5: Distribution of number of encounters per individual cluster.
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Fig. 6: Distribution per individual of distinct camera locations where
the individual was seen, emphasizing that our method is able to over-
come the static background bias and identify individuals in different
contexts.
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Fig. 7: Distribution of individuals sighted per camera, sorted by
placement strategy. A distinction is made here between motion-
trigger and timelapse cameras at magnet sites.
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Fig. 8: Time in days between encounters for the largest clusters in
the ID graph. Note that our method re-identified one of the individ-
uals ~400 days later, after it had migrated out of Mpala and then
returned.
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