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Abstract: Instance segmentation and tracking are topics that have been little explored in the context of wildlife monitoring, but
provide an essential basis for further tasks such as population estimation or behavioral analysis. In this paper, we highlight the
importance of these topics and show how they can be efficiently and effectively addressed using our own multi-object tracking and
segmentation (MOTS) approach, SWIFT. For this purpose, we provide an overview of our three past publications on these topics.
Moreover, we evaluate SWIFT on two datasets, our self-created wildlife camera trap video dataset Wildpark Daylight containing
videos of red deer and fallow deer and the Wildlife Crossings dataset containing four different animal classes. Our own dataset
is one of the very few datasets in wildlife monitoring that is annotated with instance masks and tracking IDs. SWIFT significantly
improves the quality of the instance masks and also multi-object tracking accuracy scores compared to using state-of-the-art
instance segmentation and tracking approaches on both datasets.

1 Introduction

Stationary camera traps that record videos of wildlife are a widely
used tool in wildlife monitoring to monitor ecosystems. Camera
traps are present in a wide range of ecological studies [12], [10] and
are used more and more [16]. However, the generated data material
from even very few camera traps placed at a site for a few weeks
is so large that it requires enormous manual work from researchers
and it takes months to sift through the recorded videos. The use of
artificial intelligence allows to automate this process [33].

An instance segmentation detects animals in one frame of a video
(or in general objects in an image) by assigning to each detection
(1) a bounding box to locate it, (2) a segmentation mask to show
its exact contour, (3) a class label to identify what kind of animal
is present and (4) a score value to show how reliable the detection
is. Tracking, more precisely multi-object tracking (MOT), combines
the found detections of each frame into tracks by adding (5) a unique
track ID to each detection. The combined task of instance segmen-
tation and tracking is called multi-object tracking and segmentation
(MOTS). So the goal of a MOTS pipeline in the area of wildlife
monitoring is to detect and track animals in camera trap videos.

Before [58], [59] and [60], researchers have not focused on
instance segmentation and tracking when analysing wildlife videos.
If only individual images and no video data from camera traps are
available as data material, either a classification of the overall image
[17], [51], [72], [50], [81], [20], for example for the occurring ani-
mal species, or a detection with the help of a bounding box [71], [3],
[4], [27], [11], [70] is usually carried out. Instance segmentation for
images is mainly done for cattle in an enclosed environment [67],
[57], [5], [39].

However, when video data is available, instance segmentation and
tracking provide great added value for further analysis by ecologists.
Instance masks allow better separation of animals moving in a group.
Accordingly, if an abundance estimation [38], [73] is performed, a
classification of a video is not sufficient to estimate the population.
In addition to instance segmentation, tracking of animals prevents
individuals from being counted twice within a video. For example,
an animal can be briefly occluded by other individuals or objects and
would possibly be perceived as a new instance in a simple detection
without tracking. Other application areas for camera traps are the
quantification of species diversity [68] detection and study of rare
species [46] or the analysis of species replacement processes [15].
Exact detections of animals and tracking form an essential basis for

(a)
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Fig. 1: Two exemplary frames from both datasets, the Wildlife
Crossing Dataset (a) and our Rolandseck Daylight Dataset (b).

more complex tasks such as action detection [58] or re-identification
[61] of individual animals in multiple videos. Especially an action
detection enables an efficient behavioral analysis [16] and [69] of
wild animals with camera traps.

Detection in videos of great apes is performed by [90]. The apes
are detected by bounding boxes, but there is no tracking and no
instance masks. Tracking of animals is mainly considered for small
animals like fish or insects in laboratory environments [30], [56]
and [65]. Elephants are tracked in wildlife videos by [91], but they
do not deliver MOT metric values for the tracking accuracy. [31]
perform instance segmentation using a graph convolutional neural
network and track the detections by analyzing the intersection over
union of the detections. Finally, the authors determine the actions of
the piglets. The videos viewed were made in a building in a fixed
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environment and are not comparable to wildlife videos in changing
terrain.

To our knowledge, the MOTS problem has not been previously
considered in other work in the context of wildlife monitoring.
[31] perform instance segmentation and tracking on piglets. But the
videos were recorded in a building in a fixed environment, which is
not comparable to changing environments of wildlife videos. [86]
address the MOTS problem, but they only segment and track one
animal at a time in a video. Moreover, for the segmentation a user
interaction is required by manually setting an initial instance mask
of the animal in a so-called guidance frame.

In our previous work [58] we analysed instance segmentation and
a basic action recognition for animals in wildlife crossings. Building
on these findings, we had extended our existing approach with track-
ing using the Tracktor [6] to use instance segmentation and tracking
to automate the annotation of the data material [59]. In our latest
publication we present our novel MOTS pipeline SWIFT [60]. In
this paper we summarize our publications [58], [59] and [60] and
explain the general importance of instance segmentation and track-
ing in the context of wildlife monitoring. In particular, we focus on
SWIFT [60], which is our approach to solving these issues. More-
over, we newly evaluate SWIFT on the Wildlife Crossing dataset we
used in the first two publications and show that SWIFT outperforms
our previous results.

2 Related Work

The fields of instance segmentation, multi-object tracking (MOT)
and multi-object tracking and segmentation (MOTS) are major
research areas in computer vision. In the following, we give a short
overview of the most relevant work that does not explicitly deal with
the analysis of animal-related data.

2.1 Instance Segmentation

To perform instance segmentation, an object must first be detected.
Based on the underlying detector, instance segmentation approaches
are divided into two groups, the single-stage and two-stage
approaches. Two-stage approaches result in more accurate instance
masks, but are in general slower than single-stage approaches.
Single-stage methods are faster than two-stage approaches, but in
general are less accurate. Since real-time detection is not relevant
in the application area of wildlife monitoring (the videos already
recorded by camera traps are analyzed afterwards), the advan-
tage of single-stage detectors is not significant for us. The surveys
[36], [47] and [34] present a good overview over different instance
segmentation and detection approaches.

One of the most famous two-stage instance segmentation
approaches is Mask R-CNN [37]. It is still the superior network
for deriving segmentation masks in images. Mask R-CNN outper-
forms all previous winners of the COCO segmentation challenge.
Mask R-CNN often forms the basis for other instance segmentation
approaches, such as the approaches of Huang et al. [40], Fang et al.
[28], Chen et al. [18] and [48].

Famous representatives of single-stage instance segmentation are
TensorMask [21] and SipMask [14]. TensorMask uses a sliding win-
dow approach to tackle very dense segmentation tasks with many
different objects. SipMask preserves instance-specific information
by dividing the predicted segmentation mask of an object into sub-
regions in one bounding box. Other single-stage detectors are Cen-
terMask [41], ESE-Seg [82], RDSNet [76],[13], BorderPointsMask
[88] and MetricMask [77] .

Video instance segmentation approaches fall under the category
of MOTS, since these approaches perform tracking simultaneously
with instance segmentation and are therefore described in more
detail in section 2.3.

2.2 Multi-object tracking MOT

The most common and successful way to perform MOT today is
the tracking-by-detection paradigm. In a first step, a detection model

localizes all objects in a video. The data association then combines
the detected objects into tracks. This means that an improved detec-
tion model improves the tracking accuracy. For the identification
of the object a bounding box is sufficient in MOT. Our SWIFT
approach also falls into the tracking-by-detection category. In addi-
tion to tracking-by-detection approaches there are one-shot track-
ing approaches or joint-detection-and-tracking approaches. They
perform detection and tracking in one network simultaneously.
Although they generally produce poorer results, one advantage of
these methods is that they are faster and therefore more often suitable
for real-time applications.

The surveys of [24] and [84] provide a comprehensive compi-
lation of different current approaches in the field of multi-object
tracking.

A very successful and well known representative of the tracking-
by-detection paradigm is the Tracktor approach by [6]. The Tracktor
exploits the regression ability of a detection model to perform the
data association. The major advantage is that no further training with
tracking data is needed. ByteTrack [93] and the approach of [9] rely
on a combination of a Kalman Filter and the Hungarain Matching
algorithm. Further tracking-by-detection approaches are [83], [19]
and [42].

The single-shot tracker FairMOT [94], JDE [79] and the approach
by [92] simultaneously detect bounding boxes of the objects and
extract Re-ID features to track the objects. [23] and [66] use
Transformer networks to detect and track the objects. The tracking
approaches SiamMOT [62] and SMOT [43] rely on modelling the
motion to track the detected objects.

2.3 Multi-object tracking and segmentation MOTS

Multi-object tracking and segmentation MOTS combines the tasks
of instance segmentation and tracking. Many MOTS approaches use
Mask R-CNN for the instance segmentation and build the tracking
framework around this basis. Mask R-CNN is a reliable basis and
easily modifiable. Examples for this are Track R-CNN [74], SORTS
[1], MOTSNet [54], MaskProp [8] [44], [55] and [89].

The VisTr, a transformer network with an encoder and decoder
part, is used in the work of [78] to perform simultaneously instance
segmentation and tracking. STEm-SEg [2] present an end-to-end
trainable network that takes a video input in form of a 3D spatio-
temporal volume, where the network learns an embedding for each
pixel. Further MOTS approaches are ReMOTS [87], STCN [22],
PointTrack [85] and PolyTrack [29].

3 Datasets

Already annotated datasets for the tasks of instance segmentation,
MOT, and MOTS in the field of wildlife monitoring are almost
nonexistent. In [58] and [59] we used data material from camera
traps that were positioned at wildlife crossings at the federal motor-
way 7 near the city Oberthulba. The video data was provided by the
Bavarian Highway Directorate, Germany, but we had to manually
annotate all of the videos with the instance masks, tracking ids and
animal classes. We call this dataset the Wildlife Crossings dataset.
All videos are recorded at nighttime. Each video is about 10 seconds
long with 8 fps (frames per second) and a resolution of 1280 x 720
pixels. The videos include red deer, wild boar, hares and foxes. This
means that the videos have a rather low resolution, which makes it
difficult to recognise the animals, and at the same time they have
a low temporal resolution of 8 fps, which in turn leads to blurring
when the animals move quickly.

For our study [60], we created our own dataset, the Roland-
seck Daylight dataset. With permission of the Wildpark Rolandseck
GmbH, we captured video footage of fallow deer and red deer in
their natural environment in the Wildpark Rolandseck (Germany)
from November 2020 to December 2021, resulting in over 6000
recorded videos. We used two Vicutre HC500 Trail Cameras as cam-
era traps and placed them at different locations to show changing
backgrounds and different settings. The manual annotation was per-
formed with the VGG Image Annotator (VIA) Version 2.0.8 [25]
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Fig. 2: SWIFT detects the animals in a video in the instance segmentation part and forms tracks from those detections in the second part. [60]

and the annotation tool of [64]. For each animal in a frame a seg-
mentation mask, a bounding box, a class label and a track ID is
given. All videos are 30 seconds long with 30 fps (frames per sec-
ond) and a high definition resolution of 1728 x 1296 pixels. Videos
in the dataset were only shortened if there were no animals visi-
ble in the clips anymore. Our camera traps are equipped with PIR
(Pyroelectric Infrared) sensors, which detect temperature changes in
its field of view. Therefore the cameras are only triggered when an
animal moves into the field of view (not for example by a moving
branch). Our annotated dataset consists of 21 videos, which in turn
correspond to 16566 individual frames. There are two animal classes
present, red deer and fallow deer.

In this study, we evaluate SWIFT also on the Wildlife Crossings
dataset to compare the results of our first publications with SWIFT
and to show the generalizability of SWIFT.

Exemplary frames from both datasets are shown in Fig. 1.

4 SWIFT

In this section we present the functionality of SWIFT, Segmenta-
tion With Filtering of Tracklets. For a detailed explanation of the
individual algorithms we refer to our publication [60].

The goal of SWIFT is to identify all animals in an input video
by assigning (1) an instance mask, (2) a bounding box, (3) a class
label, (4) a score value and (5) a unique track ID to each animal
in each frame of the video. The workflow of SWIFT is shown in
Fig. 2. First, SWIFT performs an instance segmentation with our
refinement algorithm to detect all animals with their exact contours.
This is followed by our tracking algorithm, which consists of sev-
eral successive filtering steps to connect the found detections of all
frames to tracks through the whole video.

4.1 SWIFT Instance Segmentation

The fundamental idea of SWIFT’s instance segmentation is that
a Mask R-CNN [37] trained on the wildlife data predicts reliable
instance masks that are subsequently optimized by our refinement
algorithm.

The choice for our base detection model is Mask R-CNN because
it works reliably in different application scenarios. Therefore, Mask
R-CNN often forms the basis for complex approaches in instance
segmentation and MOTS (cf. Sec. 2.1). Furthermore, we have shown
the effectiveness of Mask R-CNN for wildlife video data in our
publications [58] and [59]. The backbone of Mask R-CNN extracts

features from the input image (or frame). These features are the
basis for the generation of regions of interest. Based on the regions
of interest the bounding box and mask regression and classification
is done in the head of the network. To improve the quality of the
predicted masks we set the input resize of the Mask R-CNN to the
exact resolution of our frames, which is higher than the default value,
which would otherwise result in a reduction and corresponding loss
of information of the input image. Moreover, we normalize the input
frames by computing the image mean and standard deviation for our
dataset. We replace the standard ResNet-50 by a ResNeXt-101 for
a better feature extraction. The deeper ResNeXt-101 backbone is
slower in training and inference, but extracts high quality features
for better instance masks. We train the network for 60 epochs with
an initial learning rate of 0.0005, a momentum of 0.9 and weight
decay of 0.0005. The best values for these parameters were deter-
mined in different experiments. We reduce the learning rate after 25
and 45 epochs by a factor of 0.1. At these points, the loss no longer
decreases and a smaller learning rate is necessary. However, a further
reduction in the learning rate is not useful.

The inspiration for our refinement strategy comes from interactive
segmentation of images. In this scenario a user sets positive and neg-
ative points that are either inside or outside the desired mask of the
object. Usually an exact instance masks can be achieved with 3 to 10
clicks. We follow the approach of [64] for interactive segmentation.
The authors have shown that their refinement network is superior
to other interactive segmentation approaches. Especially the HR-Net
backbone in the refinement network [75] enables the creation of high
resolution instance masks, which is our goal. Our approach is fully
automatic, therefore here is no user who can set clicks. The SWIFT
refinement algorithm generates positive and negative clicks automat-
ically by consideration of the dilated and eroded instance mask from
the Mask R-CNN. The positive clicks can be sampled on the outline
of the dilated (increased) instance mask. The negative clicks can be
sampled in the same way by using the eroded (decreased) instance
mask.

4.2 SWIFT Tracking

The SWIFT tracking algorithm tracks the refined detections from the
SWIFT instance segmentation part. This means that each instance
mask is assigned a unique track id to track all animals within a video.
The tracking algorithm we designed works with different successive
filtering steps. Each filtering step either deletes previously created
tracklets or merges them into longer tracklets. As long as a track is
not final, it is generally called a tracklet.
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The initial tracklets are generated with a particle filter [32] and
IoU matching with instance masks. The inspiration for this step
comes from the simple, but very successful SORT tracking algorithm
[9]. Instead of using the Intersection over Union values of the bound-
ing boxes of the detections we use the IoU of the instance masks,
which is useful for crowded situations like deer moving in a group.
Furthermore, we change the motion model from a Kalman filter [80]
to a particle filter [32]. The advantage of the particle filter compared
to the Kalman filter in predicting the movement of the animals is
that a particle filter can represent both linear and non-linear systems,
while a Kalman filter is limited to linear systems.

The first filtering step deletes tracklets that contain another track-
let spatially and temporally. It is common that in the detection step
not only the animal, but also parts like a leg or the head are detected
as additional objects. These partial detections normally have lower
confidence scores. It is also possible that an additional detection is
larger than the animal, for example, because a tree or parts of another
animal had a similar colour. In this case the larger detection will be
deleted.

Filtering step 2 merges tracklets based on a position estimation
and a Re-ID network, which is used to re-identify animals in the
same video.

In the third filtering step, we match tracklets based only on the
Re-ID features. Here we consider the cases that cannot be explained
by the position estimation from filtering step 2, such as leaving and
re-entering the scenery or a change of direction of the animal dur-
ing its occlusion like by a tree. Therefore, we call this step global
tracklet matching because there are no spatial constraints for the
re-identification.

The final filtering step 4 deletes tracklets that are either very short
or have a low overall score value.

4.3 Experiments

We use the standard COCO metrics to evaluate the instance seg-
mentation. A detailed explanation is found in [58], [59], [52] and
[26]. For the evaluation, we consider the average precision APmask

and the average recall ARmask of the instance masks. Both are
calculated as an average over IoU threshold values ranging from
0.5, ..., 0.95. Additionally, we report the average precision APmask

0.5
and APmask

0.75 that are computed for one specific IoU threshold. This
means that APmask

0.75 represents a stricter metric than APmask
0.5 .

The accuracy of the tracking is determined by the MOT met-
rics. Further explanations can be found in the works of [59], [7] and
[49]. We measure the quality of our tracking results with the accu-
racy MOTA and precision MOTP of the MOT metrics. Moreover,
we consider the false positives FP , false negatives FN and the id
switches IDS. Each ground truth track is classified into three dif-
ferent categories: Mostly Tracked (MT), Partially Tracked (PT) and
Mostly Lost (ML). The IDF1 metric describes the ratio of cor-
rectly identified detections over the average number of ground truth
detections and observed detections.

Additionally, we use the MOTS metrics proposed by [74] for the
combined task of instance segmentation and tracking. The MOTS
metrics extend the MOT metrics by including instance masks instead
of bounding boxes in the computation. The mask based metrics
MOTSA and MOTSP describe the accuracy and the precision.
Moreover, we use the sMOTSA metric, which is a soft version
of MOTSA focusing on correct instance masks in the tracking
process.

4.3.1 Implementation Details: The training and testing was
performed with a GeForce RTX 2080 Ti GPU with 11 GB graphic
memory, 16 GB RAM and an Intel Core i7-6700K 4.00 GHz CPU.

All programs use Python 3 and PyTorch [53] for building and
training the networks. The Mask R-CNN model is built around the
PyTorch detection model of Mask R-CNN. The implementation of
the refinement network is based on the official implementation from
github from [64]. The HR-Net in this implementation is pretrained
on the COCO dataset [45] and the LVIS dataset [35].

4.3.2 Evaluation Studies on SWIFT: We examine the func-
tionality of the individual parts of SWIFT by comparing them with
other known competitive approaches. We start with the instance
segmentation and refinement part and continue with the tracking
algorithm. In this paper we newly evaluate SWIFT on the Wildlife
Crossings dataset that we used in our previous work [58] and [59].

For the evaluation of SWIFT we split the Rolandseck Daylight
dataset that we described in Sec. 3 in a train and test set. The train
set contains 17 and the test set the remaining 4 videos. The test set
consists of 2 red deer and 2 fallow deer videos. The test set represents
the data set well, as it has a mix of challenging to moderately difficult
videos in terms of detection and tracking. In the test videos are a total
of 34 animal individuals. The Wildlife Crossings dataset is split with
the same strategy, resulting in 33 videos in the train set and 8 video
in the test set.

4.3.3 Instance Segmentation Evaluation: We determine the
quality of the instance segmentation of SWIFT by using the COCO
metrics. We compare the results of our refinement algorithm with the
results of the pure Mask R-CNN [37] without refinement. Moreover,
we compare our choice of refinement network, the HR-Net [64], with
the f-brs approach [63], which also uses positive and negative points
for interactive segmentation. For the HR-Net, we examine two dif-
ferent execution modes in particular. As mentioned in Sec. 3, the
approach of [64] was successfully used for the interactive annotation
of the dataset. The Mask R-CNN network is trained as described in
Sec.4.1.

With setmask the refinement network, the HR-Net, offers the
possibility to initialize the refinement process with a given instance
mask. We analyse the results of the HR-Net with an initialized mask
and without one.

The results of the instance segmentation are shown in Tab. 1.
The best results in average precision APmask with 0.495 for the
Rolandseck Daylight dataet are achieved by our approach SWIFT
with the setmask function of HR-Net. SWIFT increases the quality
of the instance masks significantly from the base value 0.432 of the
Mask R-CNN. In particular, in the stricter APmask

0.75 metric, SWIFT
shows an improvement over the baseline that means that the masks
are more accurate due to the refinement. The average recall ARmask

is improved by using our approach as well as the average preci-
sion. In the same way, SWIFT shows a much better performance
for the other dataset than the Mask R-CNN base model, improving
the APmask from 0.503 to 0.532. The fact that SWIFT is improv-
ing the details of the masks in particular is also reflected here in the
improvement of the stricter APmask

0.75 metric.
Fig. 3 shows exemplary results from the Rolandseck Daylight

dataset for the instance segmentation and tracking with SWIFT in
comparison to Mask R-CNN and Tracktor. The improvement in
the accuracy of the instance masks with the refinement of SWIFT
compared to Mask R-CNN is clearly visible here.

Our analysis of the refinement with the f-brs shows that not every
refinement approach improves the instance masks successfully. To
achieve an improvement, the high resolution of the frames must be
exploited with the help of the HR-net. The accuracy and the stability
of our approach profits significantly from the initialization of the
HR-Net with the base instance mask. Even though more accurate
instance masks can partially be generated by the HR-Net for animals
standing alone without an initial mask, errors can occur more easily
for groups of animals standing close together, since the similar coat
structure of the animals makes them difficult to distinguish.

4.3.4 Tracking Evaluation: We use the MOT metrics to deter-
mine the tracking capability of SWIFT and compare our approach
with the well-known and successful Tracktor [6] approach. Further-
more, we compare the tracking results with our tracking algorithm
using the original Mask R-CNN detections in comparison to the
refined masks.

In Tab. 2 we show the tracking results of SWIFT using the MOT
metrics. We analyse the Tracktor and its enhancement Tracktor++,
which is also proposed by the authors [6]. Tracktor++ uses a simple
motion model and a Re-ID network as extensions to the Tracktor.
The SWIFT tracking improves both the MOTA value from 57.2% of
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Table 1 Instance segmentation comparison: The best results are shown in bold.

Dataset Method APmask APmask
0.50 APmask

0.75 ARmask

Rolandseck Daylight Mask R-CNN 0.432 0.752 0.451 0.509
SWIFT (f-brs) 0.417 0.732 0.396 0.508
SWIFT (HR-Net without setmask) 0.475 0.752 0.462 0.564
SWIFT (HR-Net with setmask) 0.495 0.762 0.540 0.575

Wildlife Crossings Mask R-CNN 0.503 0.897 0.517 0.650
SWIFT (HR-Net with setmask) 0.532 0.899 0.553 0.681

(a)

(b)

Fig. 3: Comparison of instance segmentation and tracking quality between Mask R-CNN + Tracktor++ (a) and SWIFT (b): Three frames of a
video are displayed, each 1 second respectively 30 frames apart. Each found track is colored differently. [60]

the tracktor to 63.8% and the MOTP value from 84.5% to 86.0%.
SWIFT’s optimized tracking capability is also evident in the fact that
SWIFT improves MOTA and MOTP values using the basic Mask R-
CNN detections as input for tracking. The general advantage of a
motion model and a Re-ID network is visible in the improvement of
Tracktor to Tracktor++. SWIFT shows the highest number of mostly
tracked ground truth tracks. Furthermore, the number of false pos-
itives and false negatives is significantly reduced by SWIFT due
to its deletion and combining of tracklets. Tracktor++ shows less
id switches and a higher IDF1 metric at the cost of worse tracking
based on MOTA and MOTP. For the Wildlife Crossings dataset, the
tracking performance of SWIFT with Mask R-CNN and with refined
detections is almost the same. This is due to the significantly lower
number of frames and instance masks in the (test) dataset, which is
also visible in the number of FP and FN compared to our dataset.

In Fig. 3 we compare exemplary results for tracking with SWIFT
in comparison to the Tracktor. Tracktor generates faulty tracks with
partial detections of the animal, e.g., the head of the left animal in
the first frame and the double detection of the right animal in the
middle frame.

Additionally, we present the MOTS metric results for SWIFT
using the Mask R-CNN detections in comparison to the refined
detections in Tab. 3. The results show that using the refined instance
masks for SWIFT significantly improves the MOTS metrics com-
pared to the basic Mask R-CNN detections. In contrast to the
small optimization of the MOTA score from 63.3% to 63.8%, the
MOTSA value is significantly increased from 53.7% to 62.5%. This
is also evident in the evaluation of SWIFT on the Wildlife Cross-
ings dataset, where the MOTSA is improved from 73.2% to 76.3%.

This improvement shows that the refinement of the instance masks in
the SWIFT pipeline provides more reliable tracking results instead
of using the Mask R-CNN detections. The sMOTSA value, which
measures the joint segmentation and tracking quality of a system,
is increased significantly as a result of SWIFT with the refined
detections.

5 Discussion

Instance segmentation and tracking provide valuable information
that is necessary for further or more complex analyses of the video
data material. If an animal population is to be estimated on the basis
of video data material, tracking is essential for an abundance esti-
mation like [38], [73]. A detection of the animals alone would not
enable a correct counting of the animals. During the recording an
animal can be occluded by other animals or an object or can even
leave and reenter the scene. Only by tracking the detections over the
whole video it is possible to correctly detect all individuals. Instance
masks are very useful for reliable tracking, as we have shown with
SWIFT. Therefore, a MOTS pipeline is very useful for abundance
estimations with video data.

To correctly describe actions of animals, instance segmentation
and tracking are also very important. An action recognition or action
classification like we analysed in our publication [58] is able to pre-
dict the actions of an animal in a video sequence without a detection
of the animal. However, this only works until a single animal appears
in the video. As soon as several individuals are in a scene and per-
form different actions at the same time, this is no longer possible.
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Table 2 Tracking comparison: We compare the tracking results of the Tracktor with our SWIFT tracking algorithm. For SWIFT we differentiate between Mask R-CNN
detections and the refined detections from our refinement algorithm. The test set of Rolandseck Daylight contains 3600 images with 23463 instances and the test set
of Wildlife Crossings contains 5128 images with 632 instances. The depicted metrics are the MOT metrics. The best results are shown in bold.

Dataset Method MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ IDF1 ↑ MT PT ML

Rolandseck Daylight Tracktor 57.2% 84.5% 5072 4479 492 56.0% 22 8 4
Tracktor++ 59.0% 84.5% 5061 4498 56 66.1% 22 8 4
SWIFT (with Mask R-CNN detections) 63.3% 85.0% 4475 4056 69 61.7% 24 6 4
SWIFT (with refined detections) 63.8% 86.0% 4214 4187 77 59.2% 24 6 4

Wildlife Crossings SWIFT (with Mask R-CNN detections) 64.1% 82.2% 71 149 7 76.9% 9 4 3
SWIFT (with refined detections) 63.0% 82.2% 64 166 4 76.9% 7 5 4

Action detection is needed for this. In order to correctly predict the
actions of the animals, the animals must be detected and tracked.
Then the actions for the individual detections can be determined. An
exact outline of the animal through the instance mask can be very
advantageous, especially for animals that are close to each other. A
successful action detection would facilitate behavioral analysis like
[16], [69].

The task of re-identification of individual animals like in [61] can
benefit from an instance segmentation. Finding the exact contour of
the individual helps to distinguish animals if they are close to each
other. Bounding boxes as a result of a detection would overlap and
include parts of other animals in the bounding box of the desired
individual.

The experiments with SWIFT show that our approach is an
efficient and effective solution for the MOTS task for wildlife cam-
era trap videos better than other state-of-the-art approaches. The
instance segmentation part of SWIFT is very flexible. That means
that the Mask R-CNN can in principle be replaced by another
instance segmentation method if another baseline model should
become established in the community in the future. Moreover,
the refinement network can also be replaced by other refinement
approaches. This allows SWIFT to benefit from improvements in
pre-trained foundation models that have not been specifically trained
for the wildlife context. A drawback of the refinement process is that
SWIFT is not suitable for real-time analysis of video data. But in the
context of wildlife monitoring this does not play a major role. If
camera trap data is analysed manually it can take up to months to
sift through all recorded videos from one site. The flexibility of the
instance segmentation part of SWIFT is also beneficial for the track-
ing part. We have shown in our experiments that improved instance
masks boost the tracking accuracy in comparison to non-optimized
detections. The SWIFT approach relies on the tracking-by-detection
paradigma, which means that the tracking accuracy is dependent
on the quality of the detections. Therefore, an improved instance
segmentation will also result in better tracking accuracies.

In general the use of artificial intelligence approaches like SWIFT
to automatically process video data in wildlife monitoring is very
beneficial for ecologists. The enormous amount of video data that
camera traps generate cannot be analysed manually. An automatic
processing of video data enables standardised results and saves time
for further tasks. However, to train SWIFT on, for example, videos
for a new species, training data must first be created and annotated.
All Deep Learning approaches require a large amount of diverse
training data to make correct predictions on unseen data. We have
shown in our work [59] that the annotation process can be partially

automated. Especially if there are already annotated videos or sim-
ilar dataset, for example, SWIFT can be used to generate instance
masks and tracks as annotations for new videos like we proposed in
general in [59].

6 Conclusion

In this work, we emphasize why instance segmentation and track-
ing are important in the context of wildlife monitoring. In general,
instance segmentation and tracking are areas in wildlife monitoring
that have hardly been explored so far. In our past three publica-
tions [58], [59] and [60] we explored these topics. With SWIFT [60]
we presented our efficient and effective MOTS approach, which is
the first approach, to the best of our knowledge, that tracks ani-
mals in wildlife monitoring videos with instance masks. We analyze
the functionality of SWIFT on two camera trap datasets. In our
experiments we have shown that SWIFT improves quality of the
instance masks as well as the tracking accuracy compared to other
state-of-the-art approaches.

Instance segmentation and tracking are beneficial for tasks like
abundance estimation, quantification of species diversity, detection
and study of rare species and the analysis of species replacement
processes. Moreover, the results of the instance segmentation form
an important basis for more complex tasks like action detection or
re-identification, which are helpful for an behavioural studies.

We believe that the use of SWIFT in wildlife monitoring will
be beneficial for ecologists by eliminating the need to analyze all
video data material by camera traps themselves, while enabling new
insights through application to large datasets. In the future, we plan
to use SWIFT as our basis for a further action detection or re-
identification of animals in videos.
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Table 3 MOTS comparison: The MOTS metrics for SWIFT with the Mask R-CNN detections and with the refined detections are shown. The best results are shown in
bold.

Dataset Method sMOTSA ↑ MOTSA ↑ MOTSP ↑ FP ↓ FN↓ IDS↓

Rolandseck Daylight SWIFT (with Mask R-CNN detections) 31.5% 53.7% 71.5% 5601 5182 69
SWIFT (with refined detections) 46.0% 62.5% 79.8% 4375 4348 77

Wildlife Crossings SWIFT (with Mask R-CNN detections) 54.9% 73.2% 77.0% 38 116 12
SWIFT (with refined detections) 61.4% 76.3% 81.6% 20 122 8
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